Глава 44. Мистер Аполлинакс в нью-йорке 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Глава 44. Мистер Аполлинакс в нью-йорке



 

Когда мистер Аполлинакс посетил Соединенные Штаты,

Чайные чашки звенели от его смеха.

Т. С. Эллиот

 

 

П. Бертран Аполлинакс, блестящий протеже знаменитого французского математика Никола Бурбаки, до весны 1960 года был мало известен даже во Франции. Многим известно, что именно весной 1960 года весь математический мир был потрясен появлением в одном французском математическом журнале небольшой заметки, в которой давалось определение функции, ныне известной как «функция Аполлинакса». С помощью этой замечательной функции Аполлинакс смог одним ударом 1) доказать великую теорему Ферма; 2) построить контрпример (карту с 5693 областями) к знаменитой топологической проблеме четырех красок; 3) заложить основу для сделанного три месяца спустя Ченнингом Чита открытия — обнаружения 5693-значного целого числа, которое одновременно и совершенно, и нечетно (до того ни одного такого числа известно не было).

Читатель поймет, с каким волнением я получил от профессора Чита из Нью-Йоркского университета приглашение на чаепитие, где Аполлинакс должен был быть почетным гостем. Профессор Чита живет в Гринвич-Вилледж, в большом каменном доме неподалеку от Пятой авеню. Дом этот принадлежит миссис Орвиль Флаккус, вдове известного финансиста. Студенты расположенного по соседству Нью-Йоркского университета называют его Дворцом Флаккуса. Когда я пришел, встреча была в полном разгаре. Я узнал нескольких профессоров математического факультета и догадался, что большинство молодых людей — аспиранты того же факультета.

Ошибиться в том, кто из присутствующих был Аполлинаксом, было невозможно. Он явно находился в центре всеобщего внимания. Высокий мужчина лет тридцати с небольшим, с резкими чертами лица, которые нельзя было назвать привлекательными, он производил впечатление человека, в котором физическая мощь сочетается с выдающимся интеллектом. У него была небольшая черная эспаньолка, а из-под твидового пиджака выглядывал ярко-красный жилет.

Пока миссис Флаккус наливала мне чашку чаю, я услышал, как одна молодая девушка сказала:

— Мистер Аполлинакс, это серебряное кольцо у вас на пальце сделано в виде листа Мёбиуса?

Аполлинакс снял кольцо и протянул девушке.

— Да. Его сделал мой друг ювелир, владелец мастерской на набережной Сены.

Говорил Аполлинакс с сильным французским акцентом.

— С ума сойти! — воскликнула девушка, возвращая кольцо. — А вы не боитесь, что когда-нибудь ваш палец может исчезнуть?

Аполлинакс громко засмеялся.

— Если от этого можно сойти с ума, то у меня есть для вас кое-что, от чего подавно можно потерять рассудок.

С этими словами Аполлинакс сунул руку в боковой карман и вытащил оттуда плоскую квадратную коробочку из дерева. В ней оказалось семнадцать белых пластмассовых плиток, плотно прилегающих друг к другу (рис. 225, слева). Плитки были такой толщины, что пять маленьких плиток в центре коробочки имели форму кубов. Аполлинакс попросил обратить внимание на число кубиков, вывалил все плитки на стол и быстро собрал их снова в коробочку, но на этот раз так, как показано на рис. 225 справа.

 

Рис. 225 К таинственному исчезновению кубика.

 

Все плитки, как и прежде, плотно прилегали друг к другу, но кубиков теперь было только четыре. Один кубик исчез! Девушка с недоверием посмотрела сначала на плитки в коробочке, потом на Аполлинакса, который трясся от хохота.

— Позвольте мне немного рассмотреть их, — попросила она.

Взяв из рук Аполлинакса коробочку, девушка удалилась с ней в дальний угол комнаты.

— Кто эта птичка? — спросил Аполлинакс у профессора Чита.

— Простите? — переспросил профессор.

— Ну, та девушка в свитере.

— Ах эта. Ее зову Нэнси Эллискот. Она из Бостона, одна из лучших студенток-математиков.

— Очень мила.

— Вы находите? Я никогда не видел, чтобы она носила что-нибудь, кроме джинсов и того грязного свитера, что на ней сейчас.

— Мне нравится непринужденность жителей Гринвич-Вилледж, заметил Аполлинакс, — они все так похожи друг на друга.

— Иногда, — подал голос кто-то из гостей, — непринужденность трудно отличить от невроза.

— Это напоминает мне, — сказал я, — математическую загадку, которую я недавно слышал. В чем разница между психопатом и неврастеником?

Никто не ответил на мой вопрос.

— Психопат думает, — продолжал я, — что дважды два — пять.

Неврастеник знает, что дважды два равно четырем, и это его нервирует.

Раздался вежливый смех, но Аполлинакс помрачнел.

— У неврастеника есть все основания нервничать. Разве Александр Поуп не писал: «О боги! Почему дважды два непременно должно быть равно четырем?» И действительно, почему? Кто может сказать, почему масло масляное? Кто смеет утверждать, что даже простая арифметика свободна от противоречий?

Аполлинакс вынул из кармана записную книжку и написал на чистой страничке следующий бесконечный ряд:

4–4 + 4–4 + 4–4 + 4…

— Чему, как вы думаете, — спросил он, — равна сумма этого ряда? Если его члены сгруппировать так:

(4–4) + (4–4) + (4–4) +…,

то сумма, очевидно, равна нулю. Но если сгруппировать их иначе, например так:

4 — (4–4) — (4–4) — (4–4) — …,

то сумма, очевидно, будет равна четырем. Можно сгруппировать члены ряда еще одним способом:

4 — (4–4) + (4–4) + (4–4) +…).

Тогда сумма ряда будет равна четырем минус сумма того же ряда. Иначе говоря, удвоенная сумма равна четырем, следовательно, сама сумма должна быть равна половине четверки, или двум.

Я хотел было сделать замечание, но тут среди гостей протолкалась Нэнси и сказала:

— Эти плитки не дают мне покоя. Что случилось с пятым кубиком?

Аполлинакс смеялся до слез.

— Я же дал вам намек, милая. Скорее всего кубик ускользнул в высшее измерение.

— Пытаетесь меня одурачить?

— Хотел бы, — вздохнул Аполлинакс. — Четвертое измерение, как вам известно, простирается вдоль четвертой координаты, перпендикулярной трем координатам трехмерного пространства. Рассмотрим теперь куб. У него четыре главные диагонали, каждая из них идет от одной вершины куба через его центр к противоположной вершине. Вследствие симметрии куба каждая диагональ, очевидно, ортогональна к трем остальным диагоналям. Почему бы кубу, если ему это нравится, не ускользнуть по четвертой координате?

— Но мой преподаватель физики, — сказала Нэнси, нахмурив брови, — учил меня, что четвертым измерением служит время.

— Чепуха! — фыркнул Аполлинакс. — Общая теория относительности давно мертва. Разве ваш профессор не слышал о роковом изъяне эйнштейновской теории, недавно обнаруженном Хилбертом Донглем?

— Сомневаюсь, чтобы это была правда, — ответила Нэнси.

— Идею Донгля легко объяснить. Если вы быстро закрутите шар из мягкой резины, что произойдет с его экватором? Он расширится. В рамках теории относительности вы можете объяснить это расширение двумя способами. Во-первых, вы можете предположить, что вся Вселенная представляет собой некую фиксированную систему отсчета — так называемую инерциальную систему отсчета. Тогда вы говорите, что сфера вращается, а инерция заставляет экватор расширяться. Во-вторых, вы можете принять за фиксированную систему отсчета сферу, полагая, что вращается остальная Вселенная. В этом случае вы говорите, что массы движущихся звезд создают тензорное гравитационное поле, которое оказывает сильнейшее воздействие на экватор неподвижного шара. Конечно…

— Я бы предположил несколько иную формулировку, — вмешался профессор Чита. — Я бы сказал, что существует относительное движение сферы и звезд и это относительное движение обусловливает определенные изменения в временной структуре Вселенной. Образно выражаясь, можно сказать, что давление этой пространственно-временной матрицы и приводит к растяжению экватора. Растяжение можно считать либо гравитационным, либо инерциальным эффектом. И в том и в другом случае гравитационные уравнения абсолютно одинаковы.

— Очень хорошо, — ответил Аполлинакс. — То, о чем вы говорите, Эйнштейн называл принципом эквивалентности — эквивалентности гравитации и инерции. Как любит говорить Ганс Рейхенбах, подлинного различия между ними нет. Но позвольте вас спросить: разве теория относительности не запрещает физическим телам двигаться с отрицательными скоростями, превышающими скорость света? И все же, приняв резиновый шар за фиксированную систему отсчета и лишь слегка закрутив его, мы сможем придать Луне относительную скорость, намного превосходящую скорость света.

Профессор Чита медленно перевел дыхание.

— Дело в том, — продолжал Аполлинакс, что мы просто не в состоянии удерживать шар неподвижно, когда Вселенная вращается вокруг него. Это означает, что вращение шара мы должны считать не относительным, а абсолютным. Астрономы сталкиваются с аналогичной трудностью при попытке объяснить так называемый поперечный эффект Доплера. Если Земля вращается, то относительная поперечная скорость между обсерваторией и лучом света, идущим от далекой звезды, мала, поэтому мало и доплерово смещение. Если же считать, что вращается Вселенная, то поперечная скорость далекой звезды относительно обсерватории очень велика, и доплерово смещение должно быть большим. Поскольку доплерово смещение мало, мы вынуждены принять допущение о том, что вращается именно Земля. Тем самым наносится решающий удар по теории относительности.

— А как же, — пробормотал Чита, слегка бледнея, — согласовать ваше утверждение с тем фактом, что эксперимент Майкельсона—Морли не обнаружил движения Земли относительно неподвижного пространства?

— Очень просто, — ответил Аполлинакс. — Вселенная бесконечна. Земля обращается вокруг Солнца, Солнце в свою очередь движется через Галактику, Галактика как-то перемещается относительно других галактик, те образуют скопления галактик, которые находятся в движении по отношению к другим галактическим скоплениям, скопления входят как составные части в сверхскопления и т. д. Иерархия бесконечна. Сложите бесконечный ряд векторов, имеющих случайную величину и случайное направление, и что вы получите? Они взаимно уничтожатся. Нуль и бесконечность — близкие родственники. Позвольте продемонстрировать это на примере.

Он указал на большую вазу, стоявшую на столе.

— Предположим, что ваза пуста, и начнем наполнять ее числами. Если угодно, вы можете представить себе, что числа написаны на маленьких карточках. За минуту до полудня положим в вазу числа от 1 до 10, а затем извлечем из нее число 1. За полминуты до полудня положим в вазу числа от 11 до 20 и вынем из нее число 2. За треть минуты до полудня положим в вазу числа от 21 до 30 и вытащим число 3. За четверть минуты до полудня опустим в вазу числа от 31 до 40 и т. д. Сколько чисел останется в вазе в полдень?

— Бесконечно много, — ответила Нэнси. — Каждый раз, когда вы брали из вазы одно число, вы клали в нее десять чисел.

Аполлинакс закудахтал от смеха.

— В вазе ничего не останется! Останется ли в вазе число 4? Нет, мы вынем его во время четвертой операции. Останется ли в вазе число 518? Нет, мы извлечем его при 518-й операции. Числа, оставшиеся в вазе в полдень, образуют пустое множество. Теперь вы видите, насколько бесконечность близка к нулю?

Тут с подносом в руках к нам подошла миссис Чита. На подносе были разного рода печенья и сласти.

— Воспользуюсь аксиомой выбора Цермело, — сказал Аполлинакс, потянув себя за эспаньолку, — и возьму по штучке каждого сорта.

— Как вы относитесь к современной квантовой теории, — спросил я, немного погодя, — если считаете, что теория относительности мертва? Верите ли вы в то, что поведение элементарных частиц по самому своему существу случайно, или считаете, что случайность в их поведении отражает лишь наше незнание тех законов, которым оно подчиняется?

— Я придерживаюсь современных взглядов, — сказал Аполлинакс. — Можно даже сказать, что я иду гораздо дальше. Я согласен с Карлом Поппером, что существуют логические причины, по которым детерминизм нельзя более принимать всерьез.

— В это трудно поверить, — заметил кто-то.

— Ну что ж, сформулируем нашу мысль несколько иначе. Существуют такие отрезки будущего, которые в принципе никогда нельзя предсказать правильно, даже если вы располагаете полной информацией о состоянии Вселенной в данный момент. Позвольте продемонстрировать.

Он вытащил из кармана чистую карточку, какие обычно используют в библиотечных каталогах, и, держа ее так, чтобы никто не мог видеть, что он на ней пишет, нацарапал что-то и передал карточку мне, держа ее исписанной стороной вниз.

— Положите в правый карман ваших брюк.

Я исполнил указание.

— На карточке, — пояснил Аполлинакс, — я описал одно будущее событие. Оно еще не произошло, но заведомо должно либо произойти, либо не произойти, прежде чем наступит, — тут он взглянул на свои часы, — шесть часов.

Вынув из кармана еще одну чистую карточку, он протянул ее мне.

— Я хочу, — сказал Аполлинакс, — чтобы вы попробовали догадаться, произойдет ли то событие, которое я только что описал на первой карточке. Если вы считаете, что оно произойдет, напишите на той карточке, которая у вас в руках, «да». Если вы думаете, что оно не произойдет, напишите «нет».

Я начал было писать, но Аполлинакс схватил меня за руку.

— Подождите, старина. Если я увижу ваше предсказание, то смогу что-нибудь предпринять для того, чтобы оно не сбылось. Подождите, пока я не отвернусь, и не давайте никому подсматривать то, что вы напишете.

Он отвернулся и до тех пор, пока я не кончил писать, старательно разглядывал потолок.

— А теперь положите карточку со своим предсказанием к себе в левый карман, где его никто не сможет увидеть.

Он снова повернулся ко мне.

— Я не знаю вашего предсказания, а вы не знаете, в чем состоит событие. Вероятность того, что вы угадали правильно, равна 1/2.

Я кивнул.

— Я предлагаю вам пари. Если ваше предсказание ошибочно, вы платите мне десять центов. Если же оно верно, я плачу вам миллион долларов.

Все удивились.

— Вот это ставка, — проговорил я.

— А пока мы ждем, — продолжал Аполлинакс, обращаясь к Нэнси, — вернемся снова к теории относительности. Хотите знать, каким образом вы можете всегда носить относительно чистый свитер, даже если у вас есть только два свитера и вы их никогда не стираете?

— Я вся обратилась в слух, — ответила Нэнси улыбаясь.

— Не думайте плохого, — извинился Аполлинакс, — у вас есть и другие приметы, в том числе очень милые, но позвольте мне все-таки объяснить, как обстоит дело со свитерами. Вы должны носить самый чистый свитер (назовем его А) до тех пор, пока он не станет грязнее свитера В. Затем вы должны снять А и надеть относительно чистый свитер В. В тот момент, когда В станет грязнее А, вы снимаете В и снова надеваете А и т. д.

Нэнси сделала гримасу.

— К сожалению, я не могу ждать до шести часов, — сказал Аполлинакс, — тем более в такой теплый весенний вечер в Манхэттене. Вы случайно не знаете, не играет ли где-нибудь сегодня вечером Телониус Монк?

Нэнси широко раскрыла глаза.

— Конечно, знаю. Он играет как раз здесь, в Гринвич-Вилледж.

А вам нравится его манера исполнения?

— Я просто изучаю ее, — ответил Аполлинакс. — А теперь, если бы вы могли указать мне какой-нибудь ресторан, где мы с вами могли бы пообедать, то я бы объяснил вам тайну исчезновения кубика, а затем мы отправились бы слушать Монка.

После того как Аполлинакс, держа Нэнси под руку, ушел, слух о нашем пари быстро распространился среди гостей. Когда наступило шесть часов, все собрались, чтобы узнать, что же написали Аполлинакс и я. Прав оказался он. Событие было логически непредсказуемым, и я проиграл ему десять центов.

Для собственного развлечения читатель может попробовать отгадать, какое будущее событие предсказал Аполлинакс.

* * *

Многие читатели всерьез поверили в существование Аполлинакса (хотя я и сказал, что он был протеже Бурбаки, известного, но не существующего в действительности французского математика) и просили сообщить им, где можно подробнее прочитать о «функции Аполлинакса». И Аполлинакс и Нэнси, так же как и другие участники чаепития, — персонажи двух поэм Т. С. Эллиота «Мистер Аполлинакс» и «Нэнси», которыми открывается его сборник поэм 1909–1962 годов.

Кстати сказать, поэма «Мистер Аполлинакс» посвящена Бертрану Расселу. Когда Рассел в 1914 году посетил Гарвард, Эллиот присутствовал на его лекциях и они встречались за чашкой чая.

Эти встречи и послужили поводом для создания поэмы. Хилберт Донгль — это производное от Херберта Дингля, английского физика, утверждавшего, что если парадокс часов в теории относительности верен, то сама теория относительности неверна (см. главу о парадоксе часов в моей книге «Теория относительности для миллионов»[69]). Телониус Монк — это просто Телониус Монк.

Рассуждение Аполлинакса о грязных свитерах Нэнси заимствовано из небольшой поэмы Пита Хейна, имя которого уже неоднократно упоминалось в нашей книге. Парадокс с числами в вазе взят из «Математической смеси» Дж. Э. Литлвуда.[70] Он показывает, что при вычитании из трансфинитного числа «алеф-нуль» того же числа, умноженного на десять, может получиться нуль. Если перенумерованные карточки вынимать из вазы в последовательности 2, 4, 6, 8…, то в полдень в вазе останется счетное множество карточек, а именно все карточки с нечетными номерами. Точно так же можно вынуть бесконечно много карточек и оставить в вазе любое наперед заданное конечное число карточек. Если, например, вы хотите, чтобы в вазе осталось три числа, то нужно вынимать числа, начиная с 4. Вся ситуация в целом как нельзя лучше иллюстрирует то обстоятельство, что при вычитании из одного числа алеф-нуль другого такого же числа результат неопределен: в зависимости от природы тех или иных бесконечных множеств он может быть равен нулю, бесконечности или любому целому положительному числу.

Фокус с исчезающим кубиком основан на мало известном принципе, открытом Полом Кэрри. Подробное изложение этого принципа можно найти в главе «Исчезновение фигур» моей книги «Математические чудеса и тайны».[71]

 

Ответы  

Фокус с плитками, показанный мистером Аполлинаксом, объясняется следующим образом. Когда все семнадцать плиток выложены в виде квадрата, стороны квадрата не абсолютно прямы, а слегка, на неуловимо малую величину, выпуклы. Когда один кубик взят из коробочки, а оставшиеся шестнадцать плиток перестроены так, что они снова образуют квадрат, его стороны чуть-чуть, на ту же неуловимо малую величину, вогнуты. Этим и объясняется уменьшение площади, покрываемой плитками. Чтобы еще больше усилить впечатление от фокуса, Аполлинакс, перестраивая плитки, незаметно вынул пятый кубик.

Предсказание, записанное Аполлинаксом, гласило: В левый карман вы положите карточку, на которой будет слово «нет».

Парадокс со знакопеременным рядом из четверок объясняется тем, что этот ряд не сходится и его сумма колеблется между 0 и 4. Для объяснения парадокса с вращением резинового шара и Вселенной необходимо более основательно погрузиться в теорию относительности.

 

Глава 45. ДЕВЯТЬ ЗАДАЧ

 

1. «Квадратобоязнь». В эту игру, которую мы для краткости будем называть KB Б, играют на шахматной доске размером 6x6 клеток.

Один игрок берет себе 18 белых фишек, другой — 18 черных. Каждый из игроков по очереди имеет право поставить одну фишку на любую свободную клетку доски, следя за тем, чтобы его фишки не оказались расположенными в вершинах квадрата. Квадрат может быть любого размера и наклонен под любым углом. Существует 105 различных способов построения квадратов; некоторые из них показаны на рис. 226.

 

Рис. 226 Четыре из 105 возможных квадратов при игре в «Квадратобоязнь».

 

Игрок одерживает победу, когда его противник вынужден построить один из 105 возможных квадратов. В КВБ можно играть на доске фишками или на листе бумаги с карандашом в руках. В последнем случае нужно начертить доску и отмечать ходы крестиками и ноликами.

В течение нескольких месяцев после того, как я придумал эту игру, меня не покидала уверенность в том, что KBБ не может закончиться вничью. Позднее Г. М. Мак-Лури, студент-математик из Оклахомского университета, доказал, что ничья все-таки возможна.

Разделив 36 клеток на две группы по 18 клеток в каждой так, чтобы никакие четыре клетки, входящие в одну и ту же группу, не образовывали вершин квадрата, попробуйте показать, каким образом игра в КВБ может закончиться вничью.

 

2. Головоломка с маневровым тепловозом. Составление железнодорожных составов нередко приводит к трудным задачам из области исследования операций. Задача с маневровым тепловозом, изображенная на рис. 227, обладает тем достоинством, что сочетает в себе простоту формулировки с удивительной трудностью решения.

 

Рис. 227 Головоломка из области исследования операций.

 

Тоннель достаточно широк для того, чтобы через него свободно проходил тепловоз, но узок для вагонов. Задача состоит в том, чтобы, пользуясь тепловозом, поменять местами верхний и нижний вагоны и вернуть тепловоз в исходное положение. Тепловоз может тянуть и толкать вагоны спереди и сзади. Вагоны, если это необходимо, можно сцеплять друг с другом.

Лучшим считается решение, при котором требуемый результат достигается наименьшим числом операций. Под «операцией» здесь понимается любой пробег тепловоза между двумя остановками (останавливается тепловоз перед тем, как начать двигаться в обратном направлении, при подходе к вагону, который нужно толкнуть, или когда от него отцепляют вагон, который до того он тянул за собой). Перевод стрелок операцией не считается.

При решении задачи удобно пользоваться наглядной «моделью»: положив на рисунок три монеты различного достоинства, передвигать их по рельсам. Не нужно лишь забывать, что через тоннель может проходить только монетка, изображающая тепловоз. На рис. 227 вагон стоит слишком близко от стрелок. При решении задачи можно считать, что оба вагона расположены намного дальше «к востоку» и на отрезке пути, отделяющем их от стрелок, может разместиться тепловоз с другим вагоном.

Переводить стрелки «на ходу» не разрешается. Например, нельзя переводить стрелку в тот момент, когда тепловоз только протолкнул через нее не сцепленный с ним вагон, чтобы вагон покатился по одной ветке, а тепловоз, не останавливаясь, продолжал движение по другой.

 

3. Рекламные щиты на шоссе. Смит мчался на машине по шоссе с постоянной скоростью. Рядом с ним в кабине сидела его жена.

— Ты заметила, — обратился он к ней, — что эти надоедливые щиты с рекламой пива расставлены на одинаковом расстоянии друг от друга? Хотелось бы знать, на каком именно.

Миссис Смит посмотрела на часы и сосчитала, сколько рекламных щитов промелькнуло за окном в течение одной минуты.

— Какое странное совпадение! — воскликнул Смит. — Если это число умножить на 10, то получится в точности скорость нашей машины в милях в час.

Предположим, что скорость машины постоянна, щиты расставлены через правильные промежутки, а минута, отмеренная миссис Смит, начинается и кончается в моменты, когда машина находится как раз посреди расстояния, отделяющего один рекламный щит от другого. Спрашивается, чему равно это расстояние?

 

4. Как разрезать кубик и как разрезать бублик. Инженер, известный своей склонностью к геометрическим построениям, как-то раз пил кофе с бубликом. Прежде чем бросить в чашку кусочек сахара, имевший форму кубика, он положил его на стол и подумал: «Если я проведу горизонтальную плоскость через центр куба, то в сечении, разумеется, получится квадрат. Если я проведу плоскость через центр куба и четыре его вершины, то в сечении получится вытянутый прямоугольник. Если же я проведу плоскость вот так, то…».

К своему удивлению, инженер, мысленно представив себе форму сечения, ясно увидел, что оно имеет форму правильного шестиугольника.

Каким образом он провел секущую плоскость? Если длина ребра куба равна 0,5 дюйма, то чему равна сторона правильного шестиугольника?

Бросив кубик сахару в кофе, инженер обратил внимание на бублик, лежавший перед ним на тарелочке.

«Если я проведу через центр бублика горизонтальную плоскость, то в сечении получатся две концентрические окружности, — сказал он себе. — Если я проведу вертикальную плоскость, проходящую через центр бублика, то в сечении получатся две окружности, отстоящие друг от друга на расстояние, равное ширине дырки бублика. Если же я проведу плоскость вот так, то…». От удивления он даже присвистнул: сечение имело вид двух пересекающихся окружностей!

Как было проведено последнее сечение? Если бублик имеет форму идеального тора, наружный диаметр которого равен 3 дюймам, а дырка имеет поперечник в 1 дюйм, то чему равны диаметры пересекающихся окружностей?

 

5. Как разделить пополам инь и ян? Два математика зашли пообедать в китайский ресторан «Инь и ян», расположенный на одной из улиц Манхэттена. Дожидаясь, когда их обслужат, они заговорили о символе, изображенном на карточке меню (рис. 228).

 

Рис. 228 Монада. Начало инь окрашено в черный цвет, а противоположное ему начало ян — в белый.

 

— Я думаю, это один из древнейших религиозных символов мира, — сказал один из них. — Вряд ли можно более наглядно и изящно изобразить противоположные начала, действующие в природе: добро и зло, мужчину и женщину, инфляцию и дефляцию, интегрирование и дифференцирование.

— Но этот же символ служит и фирменным знаком Северной Тихоокеанской железной дороги?

— Да. Я знаю, что один из главных инженеров компании видел эту эмблему на корейском флаге во время Чикагской всемирной выставки в 1893 году и уговорил правление сделать ее фирменным знаком. Он считал, что эта эмблема символизирует противоположность огня и воды, приводящих в движение паровоз.

— А как ты думаешь, не вдохновил ли этот древний китайский символ создателей современного бейсбольного мяча?

— Я бы не удивился, если бы узнал, что дело обстоит именно так. Кстати, ты знаешь, что существует изящный метод, позволяющий одной прямой разделить оба символа — инь и ян — на две равновеликие (по площади) части?

Предположим, что граница между символами инь и ян  образована двумя полуокружностями. Как в этом случае одновременно разделить оба символа одной и той же прямой на две равные по площади части?

 

6. Голубоглазые сестры. Если вы случайно встретите двух сестер Джонс (это означает, что каждая из встреченных вами сестер случайным образом выбрана из множества всех сестер Джонс), то в 50 % всех случаев окажется, что обе сестры голубоглазые. Каково, по вашему мнению, общее число голубоглазых девушек среди сестер Джонс?

 

7. Город, как роза, красный и его возраст. Два профессора (один — английской литературы, другой — математик) встретились в баре факультетского клуба.

— Интересно, — заметил профессор, читавший курс английской литературы, — что некоторым поэтам удается написать лишь одну бессмертную строку. Все остальное в их творчестве не имеет непреходящего значения. Взять, например, Джона Уильяма Бергона.

Его поэмы настолько посредственны, что сейчас их никто не читает, а ведь именно он написал одни из самых замечательных строк в английской поэзии:

 

Город, как роза, красный,

Вечности вдвое моложе.

 

Математик, любивший надоедать своим друзьям импровизированными головоломками, задумался на минуту, затем поднял бокал и прочитал следующие стихи:

 

Город, как роза, красный

Полвечности только прожил.

В два с половиной раза

Был бы наш город моложе

На миллиард лет сразу,

Если бы сам он сбросил

Того миллиарда тяжесть.

Возьми карандаш красный,

Возьми лист бумаги белый,

Вычисли возраст града

Цвета клубники спелой.

 

Профессор английской литературы давным-давно забыл все, чему его учили в школе на уроках алгебры, поэтому он быстро перевел разговор на другую тему, но для нашего читателя решение задачи не составит никакого труда.

 

8. Хитроумное состязание. Три колледжа — Вашингтона, Линкольна и Рузвельта—решили провести легкоатлетический матч. В каждом из видов спорта от каждого колледжа выступал один и только один участник.

Сьюзен, студентка колледжа Линкольна, сидела на трибуне и подбадривала своего приятеля, чемпиона колледжа по толканию ядра. Когда она вернулась домой, отец спросил у нее, как выступали спортсмены ее колледжа.

— Мы заняли первое место по толканию ядра, — сказала она, — но матч выиграл колледж Вашингтона. Они набрали 22 очка. Мы и колледж Рузвельта получили лишь по 9 очков.

— А как начислялись очки? — спросил отец.

— Точно не помню, — ответила Сьюзен, — но победитель в каждом виде легкой атлетики получал определенное количество очков, занявший второе место получал меньшее количество очков, а вышедший на третье место получал еще меньше очков. Число очков за каждое место во всех видах присуждалось одинаковое. (Под «числом очков» Сьюзен, конечно, имела в виду целое положительное число.)

— А по скольким видам спорта проводились соревнования?

— Честное слово, не помню, папа. Я все время смотрела толкание ядра.

— А прыжки в высоту были? — спросил брат Сьюзен.

Сьюзен кивнула.

— А кто выиграл прыжки?

Этого Сьюзен не знала.

Как ни странно, но на последний вопрос можно ответить, располагая лишь теми сведениями, которые мы уже имеем. Итак, какой колледж выиграл соревнования по прыжкам в высоту?

 

9. Термит и 27 кубиков. Представим себе большой куб, склеенный из 27 меньших деревянных кубиков одинакового размера (рис. 229).

 

Рис. 229 К задаче о термите и кубиках.

 

Термит садится на центр грани одного из наружных кубиков и прогрызает ход, пронизывающий все кубики. Побывав в одном кубике, термит уже больше к нему не возвращается. Двигается он при этом всегда параллельно какому-нибудь ребру большого куба, но никогда—параллельно диагонали.

Может ли термит прогрызть все 26 внешних кубиков, побывав в каждом из них лишь по одному разу, и закончить свой ход в центральном кубике? Если это возможно, покажите, каким должен быть путь термита. Если же вы считаете, что это невозможно, докажите свое утверждение.

Предполагается, что после того, как термит прогрыз наружную грань самого первого кубика, его путь пролегает целиком внутри большого куба. В противном случае он мог бы выбраться на поверхность большого куба и переползти в начальную точку нового хода. При этом никакой задачи, разумеется, не возникло бы.

 

Ответы  

1. На рис. 230 показана игра в КВБ, закончившаяся вничью. Это изящное решение, найденное Мак-Лури, очень непросто.

 

Рис. 230 Ничья при игре в КВБ.

 

Двое читателей, перебрав все возможные случаи, показали, что оно единственно с точностью до небольших вариаций в четырех клетках доски, указанных стрелками. Каждая из этих клеток может быть любого цвета, но все четыре клетки не должны быть одного и того же цвета, а поскольку каждый игрок имеет лишь восемнадцать фишек, то две из этих четырех клеток должны быть одного цвета, а две — другого. Расположены они так, что, как бы мы ни поворачивали доску, схема их размещения с точностью до цвета остается неизменной.

Доска размером 6x6 клеток — самая большая из досок, на которых возможна ничья. Это доказал в 1960 году Роберт А. Джьюитт.

Он сумел показать, что ничья невозможна на доске размером 7x7 клеток, а поскольку все большие доски содержат подквадрат из 7x7 клеток, то ничья на них также невозможна.

При игре в КВБ на доске размером 6x6 клеток всегда можно добиться ничьей. Следуя довольно простой симметричной стратегии, второй игрок всегда может свести игру вничью. Он может в ответ на каждый ход противника ставить свою фишку на поле, расположенное симметрично вертикальной или горизонтальной оси доски, или на поле, в которое переходит при повороте на 90° вокруг центра доски клетка, занятая последней фишкой противника (во втором случае может возникнуть позиция, изображенная на рис. 230). Возможна и другая стратегия: последнюю занятую противником клетку соединить с центром доски и, продолжив отрезок прямой по другую сторону от центра, занять клетку на этой прямой, отстоящую от середины доски на то же расстояние, что и клетка противника. Все стратегии применимы к любым доскам четного порядка, а поскольку на досках, порядок которых превышает 6, ничья невозможна, эти стратегии обеспечивают победу второму игроку на всех досках четного порядка, начиная с 8. Даже при игре на доске 6x6 зеркальносимметричная стратегия (когда второй игрок «отражает» ходы первого в оси, делящей доску пополам и параллельной ее краю) заведомо обеспечивает победу, поскольку единственная позиция, при которой достигается ничья, не обладает зеркальной симметрией.

Симметричная стратегия неприменима к доскам нечетного порядка из-за наличия у них центральной клетки. Поскольку относительно оптимальной стратегии для игры на досках нечетного порядка мы ничего не знаем, лучше всего ограничиваться доской седьмого порядка. Игра на такой доске не может закончиться вничью, но до сих пор не известно, кто из игроков — первый или второй — одержит победу, если обе стороны будут играть рационально.

В 1963 году была составлена программа для игры в КВБ для компьютера ИБМ-1620. Компьютер мог играть, делая первый или второй ход, на досках порядка от 4 до 10. Если он должен был делать первый ход, то выбирал клетку случайным образом. В последующих ходах придерживался зеркальносимметричнои стратегии, но если очередная клетка «достраивала» квадрат (то есть была четвертой вершиной квадрата), то производил случайный поиск свободной клетки до тех пор, пока не обнаруживал «безопасного» поля.

Для всех квадратных досок порядка п число различных квадратов, которые можно построить из четырех клеток, равно

 

Вывод этой формулы, а также формулы для прямоугольных досок содержится в книге Г. Лэнгмэна «Математика в играх».[72]

Насколько известно, возможность размещения фишек, не образующих треугольников, на треугольных досках не исследовалась.

 

2. Тепловоз может переставить вагоны А и В и вернуться на прежнее место за шестнадцать операций:

1) тепловоз едет вправо и сцепляется с вагоном А;

2) тащит А вниз;

3) заталкивает А на левую ветку и отцепляется от него;

4) движется вправо и проходит стрелку;

5) двигаясь по часовой стрелке, описывает круг и проходит тоннель;

6) толкает вагон В влево; оба вагона прицепляют к тепловозу;

7) тащит вагоны А и В вправо;

8) заталкивает А и В наверх; вагон А отцепляют от В;

9) тепловоз тащит В вниз;

10) толкает В влево, вагон В отцепляют от тепловоза;

11) тепловоз проходит сквозь тоннель, описывая круг против часовой стрелки;

12) заталкивает вагон А вниз;

13) едет влево и сцепляется с В;

14) тащит вагон В вправо;

15) заталкивает В наверх и отцепляется от него;

16) уезжает влево, на то место, где находился до начала маневров.

Точно так же можно действовать и в том случае, когда тепловоз не может тащить вагоны, прицепленные к нему спереди, если в самом начале тепловоз обращен к вагонам задней стенкой.

Следует заметить, что если даже нижний путь, ведущий влево, убрать, то задача все же будет иметь решение, хотя понадобится совершить еще две операции (полное решение будет, таким образом, состоять из восемнадцати операций). Может быть, читатели сами догадаются, как это сделать?

 



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 187; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.218.215 (0.202 с.)