Глава 13. Математические софизмы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Глава 13. Математические софизмы



 

Математический парадокс можно определить как истину, настолько противоречащую нашему опыту, интуиции и здравому смыслу, что в нее трудно поверить даже после того, как мы шаг за шагом проследим все ее доказательство. Математическим софизмом принято называть не менее удивительные утверждения, в доказательствах которых в отличие от доказательства парадоксов кроются незаметные, а подчас и довольно тонкие ошибки. В любой области математики — от простой арифметики до современной теоретико-множественной топологии — есть свои псевдодоказательства, свои софизмы. В лучших из них рассуждения с тщательно замаскированной ошибкой позволяют приходить к самым невероятным заключениям. Ошибкам в геометрических доказательствах Евклид посвятил целую книгу, но до наших дней она не дошла, и нам остается лишь гадать о том, какую невосполнимую утрату понесла из-за этого элементарная математика.

Семь математических софизмов, о которых пойдет речь в этой главе, выбраны из разных областей математики, каждый из них по-своему интересен. Объяснять, в чем состоит ошибочность рассуждения в каждом софизме, мы не будем, чтобы не лишать читателя удовольствия самостоятельно найти ее.

Наш первый софизм чрезвычайно элементарен. Мы предпошлем ему занимательный парадокс, на примере которого великий немецкий математик Давид Гильберт любил объяснять необычные свойства наименьшего из трансфинитных чисел «алеф-нуль». Как-то раз хозяину одной великолепной гостиницы с бесконечным, но счетным числом номеров, ни один из которых не был свободен, нужно было принять нового гостя. Хозяин вышел из положения очень просто: каждого из своих постояльцев он переселил в комнату, номер которой был на единицу больше номера прежней комнаты, в результате чего обитатель n-й комнаты переехал в (n + 1) — ю и освободил для нового гостя самую первую комнату. Как может поступить хозяин, если прибудет бесконечное множество новых гостей?

Ничуть не смущаясь, хозяин переселяет всех своих прежних постояльцев в комнаты с вдвое большими номерами (гость из комнаты 1 переезжает в комнату 2, гость из комнаты 2 — в комнату 4, гость из комнаты 3 —в комнату 6, гость из комнаты 4 — в комнату 8 и т. д.) и размещает вновь прибывших в освободившихся комнатах с нечетными номерами.

Но так ли необходимо хозяину иметь счетное число комнат для того, чтобы разместить новых гостей? В приведенных ниже стишках, взятых из одного английского журнала, выходившего в прошлом веке, рассказывается о хитром хозяине гостиницы, сумевшем разместить в девяти номерах десять гостей так, что каждому из них досталось по отдельной комнате.

 

Их было десять чудаков,

Тех спутников усталых,

Что в дверь решили постучать

Таверны «Славный малый».

— Пусти, хозяин, ночевать,

Не будешь ты в убытке,

Нам только ночку переспать,

Промокли мы до нитки.

Хозяин тем гостям был рад,

Да вот беда некстати:

Лишь девять комнат у него

И девять лишь кроватей.

— Восьми гостям я предложу

Постели честь по чести,

А двум придется ночь проспать

В одной кровати вместе.

Лишь он сказал, и сразу крик,

От гнева красны лица:

Никто из всех десятерых

Не хочет потесниться.

Как охладить страстей тех пыл,

Умерить те волненья?

Но старый плут хозяин был

И разрешил сомненья.

Двух первых путников пока,

Чтоб не судили строго,

Просил пройти он в номер «А»

И подождать немного.

Спал третий в «Б», четвертый в «В»,

В «Г» спал всю ночь наш пятый,

В «Д», «Е», «Ж», «3» нашли ночлег

С шестого по девятый.

Потом, вернувшись снова в «А»,

Где ждали его двое,

Он ключ от «И» вручить был рад

Десятому герою.

Хоть много лет с тех пор прошло,

Неясно никому,

Как смог хозяин разместить

Гостей по одному.

Иль арифметика стара,

Иль чудо перед нами,

Понять, что, как и почему,

Вы постарайтесь сами.

 

 

Примером более тонкого математического софизма служит следующее «алгебраическое» доказательство того, что любое число а равно меньшему числу b.

Начнем с равенства

а = b + с.  

Умножив обе его части на а — b, получим

а2 — ab = ab + ac — b2 — be.  

Перенесем ас в левую часть:

а2 — ab — ас = ab — b2 — be  

и разложим на множители:

а(а — b — с) = b(а — b — с)  .

Разделив обе части равенства на а — b — с, найдем

а = b,

что и требовалось доказать.

Много неприятностей подстерегает того, кто неосторожно обращается с мнимой единицей i  (квадратным корнем из -1). Об этом свидетельствует хотя бы следующее удивительное «доказательство» равенства 1 = — 1:

 

В планиметрии большая часть ошибочных доказательств связана с использованием неправильных чертежей. Рассмотрим, например, удивительное «доказательство» того, что площадь лицевой стороны многоугольника, вырезанного из бумаги, отличается от площади оборотной стороны того же многоугольника. Это «доказательство» придумано врачом-психиатром Л. Восбургом Лионсом, в нем используется один любопытный принцип, открытый П. Керри.

Прежде всего начертим на листке бумаги в клетку треугольник, площадь которого равна 60 клеткам (рис. 82), и разрежем его вдоль прямых, показанных на верхнем рисунке.

 

Рис. 82 Треугольник Керри.

 

Перевернув части треугольника на другую сторону и составив из них треугольник, изображенный на рис. 82 в середине, мы обнаружим, что в центре нового треугольника появилась дырка площадью в 2 клетки.

Иначе говоря, суммарная площадь частей исходного треугольника при переворачивании уменьшилась до 58 клеток! Перевернув еще раз (лицевой стороной вверх) лишь три части исходного треугольника, мы сможем составить из всех шести частей фигуру, изображенную на рис. 82 внизу. Ее площадь равна 59 клеткам. Что-то здесь не так, это ясно, но что именно?

Теория вероятностей изобилует правдоподобными, но логически не безупречными рассуждениями. Предположим, что вы встретились со своим другом Джоном и что каждый из вас носит тот галстук, который ваша жена подарила ему на Рождество. Вы начинаете спорить о том, чей галстук дороже, и в конце концов решаете пойти в магазин, где были куплены галстуки, и узнать, сколько стоит каждый из них. Тот, кто выиграет (чей галстук окажется дороже), по условию пари должен отдать свой галстук проигравшему, чтобы смягчить горечь поражения.

Вы рассуждаете так: «Шансы выиграть и проиграть у меня одинаковые. Выиграв, я обеднею на сумму, равную стоимости моего галстука. Проиграв, я получу более дорогой галстук. Следовательно, заключив пари, я окажусь в более выгодном положении, чем мой приятель».

Разумеется, ничто не мешает Джону рассуждать точно так же.

Могут ли обе стороны, заключившие пари, иметь преимущество друг перед другом?

Один из наиболее впечатляющих парадоксов топологии заключается в том, что тор (поверхность бублика), если его поверхность растягивать (не разрывая при этом), можно вывернуть наизнанку через любую сколь угодно малую дырочку. Никакой проблемы здесь нет. Но уж если тор действительно можно вывернуть наизнанку, то следует обратить внимание и еще на один, пожалуй, даже более замечательный факт.

На наружной стороне тора проведем меридиан (рис. 83, ввер-вверху). На внутренней стороне того же тора проведем параллель.

 

Рис. 83 Если тор вывернуть наизнанку, то кажется, что кольца, нарисованные на его поверхности, расцепляются.

 

Обе эти окружности, очевидно, сцеплены между собой. Вывернем теперь тор наизнанку через дырочку в его поверхности. Как видно из нижнего рисунка, первая окружность перейдет с наружной поверхности тора внутрь, а вторая — наружу, и обе окружности окажутся расцепленными! Очевидно, что это нарушает фундаментальный топологический закон, который гласит: разделить две сцепленные замкнутые кривые можно, лишь разорвав одну из кривых и протащив через место разрыва вторую.

В нашем последнем софизме, заимствованном из элементарной теории чисел, речь пойдет о сравнительных достоинствах «интересных» чисел. Разумеется, числа могут представлять интерес с различных точек зрения. Так, для Джорджа Мура, когда он писал свою знаменитую оду тридцатилетней женщине, особый интерес представляло число 30 — Мур считал, что в этом возрасте замужние женщины особенно привлекательны. Для специалиста по теории чисел число 30 представляет, по-видимому, еще больший интерес, поскольку это наибольшее из чисел, обладающих тем свойством, что все меньшие числа, не имеющие с ними общих делителей, просты. Число 15 873 также небезынтересно: если его умножить сначала на любую цифру, то есть на любое из чисел от 1 до 9, а затем на 7, то результат будет состоять из повторений выбранной для первого умножения цифры. Еще более удивительными свойствами обладает число 142 857: умножая его на числа от 1 до 6, вы будете получать циклические перестановки одних и тех же шести цифр.

Возникает вопрос: существуют ли неинтересные числа? С помощью элементарных рассуждений нетрудно доказать, что неинтересных чисел нет. Если бы скучные числа существовали, то все числа можно было бы разбить на два класса: интересные числа и неинтересные, скучные числа. Во множестве неинтересных чисел нашлось бы одно число, которое было бы наименьшим из всех неинтересных чисел. Но наименьшее из всех неинтересных чисел — это уже число само по себе интересное. Поэтому мы должны были бы изъять его из множества неинтересных чисел и перевести в другое множество.

В оставшемся множестве в свою очередь нашлось бы наименьшее число. Повторяя этот процесс достаточно долго, можно сделать интересным любое неинтересное число.

* * *

 

Наибольшее беспокойство читателям доставил софизм с вывернутым наизнанку тором. Тор действительно можно вывернуть наизнанку, но это изменяет его ориентацию. В результате обе окружности меняются местами и остаются в зацеплении. Если отрезать нижнюю часть чулка и сшить концы в трубку, получится превосходная модель тора. На ней нитками различных цветов можно простегать меридиан и параллель. Такой тор легко вывернуть через дырочку в поверхности, при этом прекрасно видно все, что происходит с меридианом и параллелью.

Подробное объяснение софизма с треугольником и некоторые другие головоломки можно найти в двух главах «Исчезновение фигур» моей книги «Математические чудеса и тайны».[25] Софизм с галстуком подробно разобран у М. Крайчика.[26]

Заключительное «доказательство» того, что неинтересных чисел не существует, вызвало следующую телеграмму читателя:

Немедленно прекратите вылавливать неинтересные числа и превращать их в интересные. Для интереса оставьте хоть одно неинтересное число!

 

Глава 14. НИМ И ТАК-ТИКС

 

Ним — одна из самых старых и занимательных математических игр. Играют в нее вдвоем. Дети используют для игры камешки или клочки бумаги, взрослые предпочитают раскладывать монетки на стойке бара. В наиболее известном варианте нима 12 монет раскладывают в три ряда так, как показано на рис. 84.

 

Рис. 84 Монеты, разложенные для игры в ним по схеме «3, 4, 5».

 

Правила нима просты. Игроки по очереди забирают по одной или нескольку монет из любого ряда. Выигрывает тот, кто возьмет последнюю монету. Можно играть и наоборот: считать того, кто возьмет последнюю монету, проигравшим. Хороший игрок вскоре обнаружит, что и в том и в другом варианте можно добиться победы, если после его хода останется два одинаковых ряда монеток (то есть с одним и тем же числом монет в каждом ряду), причем в каждом ряду будет находиться более одной монетки. Выиграть можно и в том случае, если в первом ряду останется одна, во втором — две и в третьем — три монетки. Тот, кто открывает игру, наверняка побеждает, если первым ходом он забирает две монетки из верхнего ряда, а затем рационально продолжает игру.

Казалось, что анализ столь простой игры не может привести к каким-либо неожиданностям, однако в начале века было сделано удивительное открытие. Обнаружилось, что ним допускает обобщение на любое число рядов с любым числом фишек в каждом ряду и что с помощью до смешного простой стратегии, используя двоичную систему счисления, любой желающий может стать непобедимым игроком. Полный анализ и доказательство существования оптимальной стратегии впервые опубликовал в 1901 году Чарлз Л. Бутон, профессор математики Гарвардского университета. Бутон и назвал игру «ним» от устаревшей формы английских глаголов «стянуть», «украсть».

Каждую комбинацию фишек в обобщенной игре Бутон назвал либо «опасной», либо «безопасной». Если позиция, создавшаяся после очередного хода игрока, гарантирует ему выигрыш, она называется безопасной; в противном случае позиция называется опасной.

Так, при игре в ним по описанной выше схеме «3, 4, 5» (рис. 84) первый игрок окажется в безопасной позиции, взяв две монетки из верхнего ряда. Любую опасную позицию, сделав соответствующий ход, всегда можно превратить в безопасную. Каждая безопасная позиция становится опасной после любого хода. Следовательно, рациональная игра заключается в том, чтобы каждый раз превращать опасную позицию в безопасную.

Чтобы определить, опасна или безопасна данная позиция, число фишек в каждом ряду нужно записать в двоичной системе. Если сумма чисел в каждом столбце (разряде) равна нулю или четна, то позиция безопасна. Если же сумма нечетна хотя бы в одном разряде, то позиция опасна.

В двоичной системе нет ничего сверхъестественного. Это всего лишь способ записи чисел в виде суммы степеней двойки. В помещенной здесь таблице приведена двоичная запись чисел от 1 до 20.

 

Двоичные числа для игры в ним  

 

 

Обратите внимание на то, что, двигаясь справа налево, вы каждый раз попадаете в столбец, отвечающий большей степени двойки, чем предыдущий (то есть переходите ко все более старшим двоичным разрядам). Так, двоичная запись 10 101 говорит нам, что к 16 нужно прибавить 4 и 1, а это дает десятичное число 21. Записывая в двоичной системе число фишек в каждом ряду, расставленных по схеме «3, 4, 5», мы получим

 

Сумма цифр в среднем столбце равна 1 — нечетному числу, что свидетельствует об опасности данной позиции. Поэтому первый игрок может сделать ее безопасной. Как уже объяснялось, именно это он и делает, когда забирает из верхнего ряда две монетки. В результате в верхнем ряду остается лишь 1 монетка (двоичное число также 1) и нечетное число в последовательности сумм чисел по столбцам пропадает. Перепробовав остальные ходы, читатель убедится в том, что только указанный ход может сделать исходную позицию безопасной.

Если в каждом ряду стоит не более 31 фишки, то любую позицию легко проанализировать, использовав в качестве вычислительной машины (работающей в двоичной системе!) пальцы левой руки. Предположим, что в начальной позиции в первом ряду стоит 7, во втором 13, в третьем —24 и в четвертом —30 фишек. Вы должны сделать первый ход. Опасна или безопасна исходная позиция? Поверните левую руку с растопыренными пальцами ладонью к себе. Большой палец будет означать коэффициент при 16, указательный—коэффициент при 8, средний — при 4, безымянный — при 2 и мизинец — коэффициент при 1. Для того чтобы ввести в вашу вычислительную машину число 7, прежде всего нужно загнуть палец, соответствующий наибольшей степени двойки, входящей в 7.

Такой степенью является 4, поэтому вы загибаете средний палец.

Продолжая двигаться направо, добавляйте степени двойки до тех пор, пока вы в сумме не получите 7. Для этого вам придется загнуть средний, безымянный пальцы и мизинец. Три остальных числа —13, 24 и 30 — вводятся в вашу вычислительную машину точно так же, но, поскольку вам требуется вычислить сумму чисел, стоящих в столбцах при одной и той же степени двойки, вы, дойдя до согнутого пальца, который вам нужно согнуть еще раз, просто разгибаете его.

Независимо от количества рядов позиция безопасна, если по окончании работы вашей вычислительной машины на левой руке не останется ни одного загнутого пальца. Это означает, что любым ходом вы наверняка сделаете положение опасным и заведомо проиграете, если ваш противник знает о ниме столько же, сколько и вы. В приведенном нами примере большой и указательный пальцы останутся согнутыми. Это говорит о том, что позиция опасна и что, сделав правильный ход, вы сможете выиграть. Поскольку опасных позиций больше, чем безопасных, у первого игрока при случайном выборе начальной позиции гораздо больше шансов выиграть, чем проиграть.

Итак, вы знаете, что позиция 7,13, 20, 30 опасна. Как найти ход, превращающий ее в безопасную? На пальцах найти нужный ход довольно трудно, поэтому лучше всего записать четыре двоичных числа в последовательности

 

Найдем самый левый столбец с нечетной суммой цифр. Изменив любой ряд с единицей в этом столбце, мы сможем превратить позицию в безопасную. Предположим, что вы хотите взять одну или несколько фишек из второго ряда. Замените ту единицу, которая вам мешала, нулем, а остальные цифры, расположенные правее ее, подберите так, чтобы ни в одном столбце сумма цифр не была нечетной. Единственный способ сделать это состоит в том, чтобы выбрать в качестве второго двоичного числа единицу. Иначе говоря, вы должны взять либо четыре фишки из третьего ряда, либо двенадцать фишек из последнего, четвертого ряда.

Полезно помнить, что для верного выигрыша фишек в двух рядах должно оставаться поровну. Поэтому при очередном ходе вы должны уравнивать число фишек в каких-нибудь двух рядах. И это правило и тот способ анализировать позиции с помощью двоичных чисел, о котором мы рассказали выше, пригодны при обычной игре, когда победителем считается тот, кто забирает последнюю фишку. К счастью, для того чтобы приспособить эту стратегию к игре «наоборот», достаточно внести лишь довольно тривиальное изменение в правило. Когда в игре «наоборот» наступит такой момент (а он непременно наступит), что только в одном ряду число фишек будет больше 1, вы должны взять из этого ряда либо все фишки, либо оставить одну фишку, чтобы число рядов, состоящих из одной-единственной фишки, стало нечетным. Например, если фишки расставлены по схеме 1, 1, 1, 3, вы должны взять все фишки, стоящие в последнем ряду. Если бы фишки были расставлены по схеме 1, 1, 1, 1,1, 8, то из последнего ряда следовало бы взять семь фишек. Необходимость в изменении стратегии возникает лишь в самом конце игры, когда хорошо видно, что следует делать для того, чтобы добиться выигрыша.

Поскольку в вычислительных машинах используется двоичная система, их нетрудно научить беспрерывной игре в ним. Для этого можно построить и специальную машину. Одним из создателей первой машины такого рода был Эдвард Н. Кондон. Машина была запатентована в 1940 году под названием «Ниматрон». Ее построила фирма «Вестингауз». «Ниматрон» экспонировался на Всемирной выставке в Нью-Йорке. Он сыграл 100 000 партий, 90 000 из них выиграл. Ббльшая часть проигрышей была намеренно подстроена экскурсоводом, чтобы доказать скептикам, что и машину можно победить.

В 1941 году существенно усовершенствованную машину для игры в ним спроектировал Рэймонд М. Редхеффер. Емкость памяти у машины Редхеффера была такой же, как и у машины Кондона (четыре ряда с семью фишками в каждом), но «Ниматрон» весил целую тонну и для его изготовления требовались дорогостоящие реле. Машина же Редхеффера весила всего пять фунтов, для ее изготовления достаточно было четырех вращающихся переключателей. В 1951 году на выставке в Англии и позднее на Торговой ярмарке в Берлине демонстрировался играющий в ним робот «Нимрод». А М. Тьюринг вспоминал позже, что «Нимрод» приобрел у берлинцев необыкновенную популярность. Посетители выставки совершенно игнорировали даже находившийся в конце помещения бар с бесплатной выпивкой; чтобы утихомиривать и сдерживать толпу, приходилось вызывать полицию. Машина стала особенно популярной после того, как выиграла три партии у тогдашнего министра экономики Эрхарда.

Среди многочисленных полностью изученных вариантов игры в ним особый интерес представляет вариант, предложенный в 1910 году американским математиком Элиакимом X. Муром. Правила этой игры во всем совпадают с правилами обычного нима с той лишь разницей, что в варианте Мура игроки могут брать из любого ряда не более чем А; фишек, где А; — некоторое заранее заданное число. Любопытно заметить, что анализ безопасности позиции с помощь двоичных чисел оказывается применимым и в этом случае, если безопасной позицией называть такую, в которой сумма двоичных цифр в каждом столбце делится без остатка на (k + 1).

Другие разновидности игры в ним, по-видимому, не имеют достаточно простой оптимальной стратегии. Наиболее интересным из еще не проанализированных вариантов нима я считаю игру, придуманную около 10 лет назад Питом Хейном (тем самым Питом Хейном, который изобрел гекс).

В игре Хейна (в странах, говорящих на английском языке, ее называют «так-тикс») фишки расставляются в виде квадрата (рис. 85).

 

Рис. 85 Игра так-тикс, придуманная Питом Хейном.

 

Игроки по очереди берут фишки из любого ряда по вертикали или по горизонтали. Брать фишки можно только подряд, не перепрыгивая через пустые клетки. Если, например, первый игрок берет две средние фишки из верхнего ряда, то противник не имеет права взять две оставшиеся фишки за один ход.

Обычная («прямая») игра тривиальна из-за слишком простой стратегии, поэтому в так-тикс следует играть «наоборот» и считать проигравшим того, кто возьмет последнюю фишку. Если игра ведется на квадратной доске с нечетным числом клеток, то первый игрок может одержать победу, взяв фишку, стоящую на центральной клетке, и делая затем ходы, симметричные ходам противника.

На доске с четным числом клеток второй игрок выигрывает, делая ходы, симметричные ходам своего противника. Для «обращенной» игры ничего похожего не известно, хотя, как нетрудно показать, на доске размером 3x3 первый игрок выигрывает, взяв либо центральную, либо угловую фишку, либо весь центральный ряд или столбец.

Остроумную идею, лежащую в основе игры в так-тикс, — использование пересекающихся рядов фишек — Хейн применил и ко многим другим двумерным и трехмерным игровым полям. В тикс можно, например, играть на треугольной или шестиугольной доске или же ставить фишки в вершины и в точки пересечения сторон пяти- и шестиугольных звезд. Можно использовать точки пересечения замкнутых кривых; в этом случае фишки, стоящие на одной кривой, следует считать принадлежащими к одному «ряду».

Построение фишек в форме квадрата сочетает в себе простоту конфигурации с максимально сложной стратегией.

Даже элементарный квадрат 4x4 поддается анализу с большим трудом, а при увеличении числа клеток сложность игры быстро возрастает.

На первый взгляд кажется, что на поле 4x4 второй игрок обязательно выигрывает, если он все время играет симметрично и меняет эту стратегию только при последнем ходе. Увы, во многих ситуациях симметричная игра не годится. Рассмотрим, например, следующую типичную партию, когда второй игрок избирает симметричную стратегию.

 

В этом примере первый ход второго игрока оказывается для него роковым. После ответного хода противника второй игрок уже никак не может выиграть, даже если все его последующие ходы не будут симметричными.

Игра так-тикс значительно сложнее, чем это кажется на первый взгляд. До сих пор не известно, кто выигрывает даже на доске 4х4, с которой сняты угловые фишки. В качестве упражнения попробуйте решить две задачи (предложенные Хейном), которые изображены на рис. 86.

 

Рис. 86 Две задачи из игры в так-тикс.

 

На каждой доске нужно найти ход, обеспечивающий победу. Может быть, какой-нибудь прилежный читатель сможет ответить и на более сложный вопрос: кто из игроков всегда может выиграть на доске 4x4 — первый или второй?

* * *

 

С. Чепмен прислал мне остроумную схему портативной машины для игры в ним. Она весит 35 унций, ее главный узел состоит из трех многослойных вращающихся переключателей, с помощью которых можно одновременно включать три ряда из четырех возможных. В каждом ряду располагается до десяти фишек. Начиная игру, машина всегда одерживает победу. Доказать это можно очень изящно. Запишем число фишек в каждом ряду в двоичной системе так, как делали это в начале главы. Ясно, что в каждом ряду 1 должна стоять либо в столбце с 8, либо в столбце с 4, но не в том и другом столбце одновременно. (Нули не могут стоять в обоих столбцах, ибо тогда число фишек в ряду было бы меньше четырех; единицы также не могут стоять в том и другом столбце одновременно, ибо тогда число фишек было бы больше десяти.) Три единицы (по одной в каждом ряду) можно разместить лишь двумя способами: 1) все три единицы в одном столбце; 2) две единицы в одном столбце и одна в другом. И в первом и во втором случае сумма цифр в каждом столбце нечетна, поэтому начальная позиция опасна, и машина, открывая игру, заведомо выигрывает.

Многие читатели прислали подробный анализ игры на доске 4x4. Простой стратегии найти не удалось никому, но теперь уже нет никаких сомнений в том, что второй игрок всегда может выиграть как на этой доске, так и на доске 4 х 4 с заранее снятыми угловыми фишками. Было высказано предположение, что на любой квадратной или прямоугольной доске, имеющей хотя бы одну нечетную сторону, начинающий игру одерживает победу, если он снимает первым ходом весь средний ряд, а на досках с четными сторонами всегда выигрывает второй игрок. Однако эти предположения до сих пор не доказаны.

Сейчас положение вещей таково: для «так-тикстов», овладевших игрой 4x4, лучше всего начать играть на доске 6 х 6. Она достаточно мала для того, чтобы игра не слишком затягивалась, и все-таки достаточно велика, чтобы игра была захватывающей и результат ее нельзя было предсказать.

 

Ответы

В первой задаче можно было выиграть несколькими разными способами: например, взяв фишки с полей 9-10-11-12 или 4-8-12-16.

Для второй задачи выигрыш приносит взятие фишек, стоящих на клетках 9 или 10.

 

Глава 15. ПРАВОЕ ИЛИ ЛЕВОЕ?

 

Недавнее «яркое и удивительное открытие» (по выражению Роберта Оппенгеймера) существования правой и левой «ручности»[27] у фундаментальных частиц несет с собой много новых идей. Имеют ли все частицы во Вселенной одинаковую «ручность»? Будет ли когда-нибудь восстановлена «двуручность» природы, если обнаружатся галактики, состоящие из антивещества — вещества, сделанного из частиц, которые «ведут себя наоборот», как говорила Алиса об отражениях предметов в зеркале?

Мы в нашей повседневной жизни настолько привыкли к зеркальным отражениям, что уверены, будто прекрасно их понимаем.

Многих озадачит вопрос: «Почему зеркало меняет местами правое 8 левое, но не переворачивает верх и низ?» Вопрос еще более запутывается существованием очень простых в изготовлении зеркал, которые вовсе не переворачивают правое и левое.

[История, очень похожая на историю с зеркалом, неожиданно произошла в совсем другой области — в лунной картографии. В Давние времена Луну рисовали так: север помещали вверху, а юг соответственно внизу. Восточной называли левую часть карты, а западной — правую; это прямо противоположно тому, что принято называть востоком и западом на земных картах. Причина такой Путаницы кроется в том, что мы смотрим на Луну, стоя спиной к Полярной звезде, отсюда естественным было назвать востоком ту часть Луны, которая обращена к востоку. У Луны восток и запад Поменялись местами, как в зеркале.

Позже (и сейчас) в астрономических трубах исчезли переворачивающие линзы — астрономов не беспокоило, что простым глазом мы видим одно изображение, а в трубе — перевернутое. (На астрономических снимках серп, смотрящий вправо, соответствует растущей Луне, а серп, смотрящий влево, — убывающей. Земля и Луна вращаются вокруг своих осей в одну и ту же сторону.) В атласах стали помещать Луну так, что юг оказывался наверху, а восток справа. Так что теперь на картах верх и низ поменялись местами!

Дальше события развивались так. В 50-х годах астрономы забеспокоились. Им показалось, что космонавту, попавшему на Луну, будет непривычно видеть Солнце восходящим на западе и заходящим на востоке (хотя каждое такое событие происходит только раз в месяц). В 1961 году Международный астрономический союз переименовал восток Луны в запад, а запад Луны — в восток. Это все равно, что назвать правую руку при зеркальном изображении левой!

На всякий случай отметим, что в соответствии с современной терминологией Море дождей находится в северо-западной части Луны (до 1951 года оно было в северо-восточной!).]

И Платон в своих «Диалогах», и Лукреций в трактате «О природе вещей» описывают зеркало, сделанное из слегка изогнутого полированного металлического прямоугольника, которое изображено на рис. 87 в центре.

 

Рис. 87 Обычное зеркало и отражение в нем (слева) и два зеркала, дающие необращенные изображения (в центре и справа).

 

Взглянув в это зеркало, вы увидите себя таким, каким вас видят окружающие. Машинописный текст, отраженный в таком зеркале, читается обычным образом, без всяких трудностей.

Еще проще сделать зеркало, которое не меняет местами правое и левое, из двух зеркал без рамок, поставленных под прямым углом друг к другу, как показано на рис. 87. Что будет с вашим отражением, если это зеркало повернуть на 90°? Изображение перевернется вверх ногами (ранее описанное зеркало обладает этим же свойством).

Симметричной называется такая структура, которая не меняется при отражении в зеркале. Она может быть наложена точка в точку на своего зеркального двойника, а асимметричная — не может. Два вида асимметричных предметов обычно различают, называя их «правыми» и «левыми». Хотя оба вида различаются между собой, вам не удастся никакими опытами обнаружить ни у одного из них такого свойства, которого не было бы у другого. Это глубоко озадачило Канта. «Что может сильнее походить на мою руку, — писал он, — чем ее отражение в зеркале? И тем не менее я не могу совместить ту руку, которую я вижу в зеркале, со своей рукой».

Эта удивительная двойственность присуща структурам любого числа измерений, в том числе и того, которое больше трех. Например, отрезок прямой симметричен в одном направлении, но отрезок, составленный из длинного и короткого отрезков, асимметричен. Отражая его в зеркале, мы увидим, что длинный и короткий отрезки поменялись местами. Обращаясь к словам, как к символам, ориентированным в одном направлении, мы увидим, что в большинстве своем они симметричны, однако существуют слова-полиндромы типа «радар», «заказ», читающиеся одинаково в обоих направлениях.

Существуют даже полиндромные предложения:[28]

Draw pupil's lip upward! — Подтяни вверх губу ученика!

A man, a plan, a canal — Panama! — Человек, план, канал — Панама!

Egad! A base tone denotes a bad age. — Ей-богу! Низкий голос указывает на пожилой возраст.

«Мадам, Адам!» — первые слова Адама (вероятно, Ева ответила на них: «Угу!»).

Поэты нередко используют полиндромные звуковые эффекты.

Хороший тому пример — известные лирические стихи Роберта Браунинга «Ночная встреча». Каждая строка в них написана по схеме abccba, чтобы передать в стихах шум набегающих морских волн.

Мелодии также можно рассматривать как звуки, упорядоченные во времени. В пятнадцатом веке было модно сочинять полиндромные каноны,[29] в которых побочная тема лишь повторяла с конца к началу главную тему. Многие композиторы (в том числе Гайдн, Бах, Бетховен, Хиндемит и Шёнберг) использовали отражение мелодий для создания контрапунктных эффектов, но, как правило, перевернутые мелодии режут слух.

С помощью магнитофона можно провести много забавных экспериментов по музыкальному отражению. Фортепьянная музыка, проигранная в обратном направлении, воспринимается как органная, потому что каждая нота звучит сначала чуть слышно и лишь потом достигает полного звучания. Совершенно потрясающего эффекта можно достичь, если проигрывать пленку в обратном направлении в помещении с хорошей реверберацией и записывать музыку на второй магнитофон. Тогда, перевернув вторую запись, мы услышим первоначальную мелодию, но каждому звуку будет предшествовать эхо.

Музыкальное отражение можно получить и другим способом.

Для этого надо повернуть пианиста на 180°, то есть так, чтобы он играл слева направо, но высокие и низкие ноты на клавиатуре поменялись бы местами. Отраженная музыка получилась бы и в том случае, если бы пианист играл как обычно, но на инструменте, отраженном в зеркале. Мелодия стала бы неузнаваемой, кроме того, возник бы неожиданный эффект замены мажорного лада минорным, и наоборот. Этот прием также использовали в канонах композиторы эпохи Возрождения и в контрапункте — композиторы, жившие позднее. Классическим примером может служить «Искусство фуги» И. С. Баха, где двенадцатая и тринадцатая фуги допускают обращение именно второго типа. Моцарт однажды написал канон, в котором побочной темой служила главная тема, читаемая с конца. Это произведение два музыканта могли бы исполнять по одним и тем же нотам, только один из них читал бы их слева направо, а другой — справа налево.

Обращаясь к двумерным структурам, мы видим, что, например, христианский крест симметричен, а древний китайский религиозный символ (рис. 88) — несимметричен.

 

Рис. 88 Китайская монада инь — ян.

 

Его темные и светлые участки называются инь и ян. Они символизируют все фундаментальные противоположности, в том числе правое и левое. Их комбинаторные аналоги — четные и нечетные числа.

Асимметрия китайского символа делает менее удивительным тот факт, что два именно китайских физика (фамилия одного из них к тому же была Ян!) получили в 1957 году Нобелевскую премию за теоретическую работу, которая привела к открытию несохранения четности. В отличие от музыки все асимметричные рисунки и изображения можно без ущерба для эстетической ценности произведения отражать в зеркале. Рембрандт однажды сделал гравюру с зеркального отражения своего знаменитого «Снятия с креста».

Высказывалось предположение, что распространенная на Западе привычка читать слева направо будет оказывать некоторое влияние на восприятие отраженного изображения. Если даже это и так, то, во всяком случае, влияние привычки читать слева направо сказывалось крайне незначительно.

Большинство слов, даже набранных типографским шрифтом, несимметрично, и поэтому обычно прочесть отраженное в зеркале слово невозможно, однако не всегда. Если вы посмотрите на зеркальное отражение слов «QUALITY CHOICE», напечатанных на боковой поверхности пачки американских сигарет «Кэмел», держа пачку параллельно полу так, чтобы ее верхний конец смотрел вправо, то увидите неожиданное зрелище: слово «QUALITY» станет совершенно неудобочитаемым, а слово «CHOICE» останется без малейшего изменения.[30] Причина кроется в том, что написанное прописными буквами слово «CHOICE» имеет горизонтальную ось симметрии, потому его можно наложить на зеркальное отражение, перевернув вверх ногами. Другие слова, например «ТОМАТ», «НАТАША», асимметричны в горизонтальной записи, но, написанные по вертикали, приобретают ось симметрии.

Рассматривая привычные трехмерные структуры, мы видим, что в них изящно сочетаются симметричные и асимметричные элементы. Большинство живых организмов с виду симметричны, исключение составляют спиральные раковины, клешни краба-скрипача, клюв у клеста и глаза плоских рыб, расположенные на одной стороне головы. Даже поведение может быть асимметричным; например, стаи летучих мышей, живущих в пещерах Карло-Карловых Вар, кружат по спирали против часовой стрелки. Предметы, сделанные руками человека, обычно выглядят симметричными, но при ближайшем рассмотрении некоторые из них все-таки оказываются несимметричными, например



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 212; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.16.184 (0.104 с.)