Значения полных сопротивлений питающих трансформаторов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Значения полных сопротивлений питающих трансформаторов



Мощность трансформатора, кВА Первичное напряжение, кВ Схема соединения обмоток Полное сопротивление трансформатора 220/400 В; Ом
1 2 3 4
25 6 - 10 Y/Yo 3,110
40 6 - 10 Y/Yo 1,949
63 6 - 10 Y/Yo 1,237
100 6 - 10 Y/Yo 0,779
160 6 - 10 Y/Yo 0,487
250 6 - 10 D /Yo 0,312
250 6 - 10 Y/Yo 0,106
250 20 - 35 Y/Yo 0,305
400 6 - 10 Y/Yo 0,195
400 6 - 10 D /Yo 0,066
630 6 - 10 Y/Yo 0,129
1000 6 - 10 Y/ Yo 0,081
1000 6 - 10 D / Yo 0,026

Однако данный метод в настоящее время на практике применяется достаточно редко, так как требует больших трудозатрат и наличие постороннего источника переменного напряжения 220 В.

Для измерения сопротивления участка цепи «фаза-нуль» до питающего трансформатора эффективнее использовать разработанный в учебно-методическом и инженерно-техническом центре Мосгосэнергонадзора (ныне Московский институт энергобезопасности и энергосбережения) измеритель малых комплексных сопротивлений «Вымпел».

Данный прибор позволяет измерять в обесточенных электрических цепях модуль сопротивления в диапазоне 0,05 - 5 Ом, угол сопротивления в диапазоне 0 ± 90 °, что соответствует разности фаз между током и напряжением в режиме однофазного замыкания при наличии питающей сети, а также рассчитывает ток однофазного замыкания, исходя из величины фазного напряжения 220 В.

6.2. Измерение при наличии напряжения питающей сети (прибором М-417)

Измерения проводятся непосредственно на электроприемниках, наиболее удаленных от проверяемого аппарата защиты, ответвлениях (на входных контактах аппарата, обеспечивающего селективность защиты сети в данном ответвлении); розетках групповых линий.

В цепях электроприемников, присоединенных к одному аппарату защиты в пределах одного помещения, допускается проводить измерения только у наиболее отдаленных электроприемников (розеток) каждого ответвления групповой линии.

У розеток, имеющих защитный заземляющий контакт, измерение сопротивления петли «фаза-нуль» производится между фазным и нулевым защитным проводником.

Однако, если эти розетки включены через устройства защитного отключения (УЗО), то прямые измерения полного сопротивления цепи «фаза-нуль» произвести невозможно, т.к. тестирующие токи существующих приборов, осуществляющих эти измерения, больше номинальных дифференциальных отключающих токов УЗО. В этом случае, для избежания демонтажа или шунтирования УЗО, измерения проводятся по участкам цепи.

Для этого необходимо отключить УЗО и измерить сопротивление участка цепи «выход УЗО - розетка» упоминавшимся ранее измерителем малых комплексных сопротивлений «Вымпел».

При этом измерения следует производить в распредустройстве на выходных контактах УЗО, предварительно замкнув фазный и заземляющий контакты розетки перемычкой, которую легко изготовить из стандартной штепсельной вилки.

Перед включением замыкающей штепсельной вилки и производством измерений необходимо убедиться в отсутствии напряжения в розетке и на выходных контактах УЗО.

После этого прибором М-417 измерить полное сопротивление участка цепи «фаза-нуль» (входные контакты УЗО - питающий трансформатор), далее сложить полученные значения сопротивлений - Z фо = Z 1 + Z 2,

где: Z фо - полное сопротивление цепи «фаза-нуль»;

Z 1 - сопротивление первого обесточенного участка;

Z 2 - сопротивление второго участка (под напряжением).

Если к УЗО присоединены несколько отходящих групповых линий, то для определения полных сопротивлений «фаза-нуль» этих линий достаточно один раз измерить сопротивление участка цепи «УЗО - питающий трансформатор» прибором М-417, после чего измерить сопротивления обесточенных участков отходящих групповых линий прибором «Вымпел» по вышеописанной методике.

Сложив каждое полученное значение сопротивления обесточенных линий с измеренным сопротивлением участка цепи «УЗО - питающий трансформатор» - получим полные сопротивления цепей «фаза-нуль» групповых линий, подключенных к этому УЗО.

Для проведения измерений прибором М-417 необходимо: присоединить прибор к электроприемнику или участнику сети, защита которых проверяется, и провести измерения, для чего:

- присоединить соединительные провода к зажимам прибора;

- ручку «Калибровка» установить в крайне левое положение;

- один из проводов с помощью пружинного зажима присоединить к корпусу электроприемника (РЕ- и PEN -проводнику ответвления), обеспечив в месте присоединения надежный контакт, а второй провод подсоединить к фазному проводу в месте его подключения к электроприемнику (присоединения РЕ- и PEN -проводников ответвления).

Эту работу необходимо выполнять отключив электроприемник от сети.

Если это невозможно, то подключение прибора выполнять в диэлектрических перчатках, защитных очках, стоя на резиновом диэлектрическом ковре или в резиновых диэлектрических галошах.

Если подключение выполнялось со снятием напряжения - подать напряжение. При наличии заземляющей (зануляющей) цепи загорится лампа Z ¹ ¥. Если лампа не загорелась - это говорит об обрыве заземляющей (зануляющей) цепи. В этом случае измерения проводить запрещается.

При загорании лампы продолжить процесс измерений, для чего:

- нажать кнопку «Проверка калибровки» и с помощью ручки «Калибровка» установить стрелку прибора на нуль;

- отпустить ручку «Проверка калибровки»; нажать кнопку «Измерение» и произвести отсчет по шкале прибора;

- время измерения не должно превышать 4 - 7 секунд с интервалами не менее 1 минуты;

- загорание сигнальной лампы «Z = 2 Om» при нажатой кнопке «Измерение» свидетельствует о сопротивлении петли «фаза-нуль» больше 2 Ом.

В этом случае необходимо произвести измерения по участкам цепи по ранее изложенной методике.

При этом коммутационный аппарат, разделяющий исследуемую цепь на обесточенный участок (для измерения сопротивления этого участка прибором М-417 на входе этого аппарата) следует выбирать из следующих противоречивых требований:

- данный аппарат, по возможности, должен находиться как можно ближе к источнику энергии, чтобы сопротивление участка цепи, измеряемое прибором М-417, укладывалось в диапазон его измерения;

- отключение данного аппарата, с другой стороны, не должно обесточивать слишком большое количество потребителей и приводить к нарушению технологических процессов.

7. ИЗМЕРЕНИЕ ТОКОВ ОДНОФАЗНЫХ ЗАМЫКАНИЙ

7.1. Порядок проведения измерений

Измерения токов однофазных замыканий проводятся на тех же электроприемниках и в тех же сетях электрических цепей, что и измерения полного сопротивления петли «фаза-нуль» в соответствии с п. 6.2 настоящих рекомендаций.

Измерения проводятся прибором Щ41160, измеряющим реальный ток однофазного замыкания в течение одного периода напряжения сети.

Для проведения измерений необходимо:

- достать соединительные провода из футляра и присоединить к измерителю согласно нанесенной на них и измерителе маркировке. В случаях, когда порядок тока короткого замыкания цепи «фаза-нуль» неизвестен, измерения необходимо начинать с ограничивающим резистором, т.е. соединительный провод «ФАЗА» присоединить к зажиму «ФАЗА огран»;

- соблюдая маркировку («фаза», «корпус») подключить прибор к испытываемому объекту, обеспечив надежное контактное соединение. Эту работу выполнять, отключив электроприемник от сети. Если это невозможно, то подключать прибор следует в диэлектрических перчатках, защитных очках, стоя на резиновом диэлектрическом ковре или в резиновых диэлектрических галошах;

- нажать кнопку ПТН (питание). Загорание индикации (должны высвечиваться нули) свидетельствует о том, что измеритель исправен и готов к работе;

- нажать кнопку ИЗМ. (измерение). На время измерения индикация гаснет, а затем высвечивается результат измерения. На время измерения в течение 5 сек. возможно подсвечивание индикации, которое не отражается на результате измерения;

- если результат измерения тока короткого замыкания с ограничивающим резистором превышает 535 А, то ориентировочное значение тока КЗ определяется по формуле:

где I изм - показания измерителя.

Следует учитывать, что наиболее достоверный результат, определенный по данной формуле, будет для цепей «фаза-нуль» с минимальной индуктивностью.

ВНИМАНИЕ: Категорически запрещается производить измерения без ограничивающего резистора, когда результат измерения с ограничивающим резистором превышает 535 А, так как это может привести к выходу из строя прибора.

Если результат измерения тока короткого замыкания с ограничивающим резистором не превышает 535 А, то измерение необходимо повторить без ограничивающего резистора, отключив соединительный провод «ФАЗА» от зажима «ФАЗА огран» и подключив его к зажиму «ФАЗА».

При этом следует иметь в виду, что предел допускаемой относительной основной погрешности в диапазоне от 1000 до 2000 А - не нормируется.

Если при измерении тока короткого замыкания происходит отключение объекта (срабатывает защита) и не удается зафиксировать результат измерения, то измерение необходимо повторить в следующем порядке:

соблюдая полярность, установить в отсек питания 6 гальванических элементов;

включить автомат защиты;

нажать кнопку ПТН (ПИТАНИЕ);

нажать кнопку ПМТ (ПАМЯТЬ), переведя измеритель в режим запоминания результата измерения;

произвести измерение, нажав кнопку ИЗМ (ИЗМЕРЕНИЕ);

включить автомат защиты, если произошло отключение измерителя от сети;

кнопку ПТН отжать и через 10 - 15с нажать. На отсчетном устройстве высвечивается результат предыдущего измерения.

Следует отметить, что использование данного прибора и аналогичных по принципу действия (ЭК0200) для измерения токов однофазных замыканий связано с рядом неудобств в процессе измерений.

Несмотря на незначительное время протекания в цепи «фаза-нуль» и измерительной цепи прибора реального тока замыкания (20 мс), при токах более 100 А использование щупов и зажимов типа «крокодил» недопустимо, т.к. происходит подгорание контактов, а при больших токах - сваривание щупа и токоведущей части.

Обеспечение надежных контактов при подключении прибора к токоведущим частям, используя болтовые, винтовые соединения и струбцины, требует больших затрат времени и производительность труда при массовых измерениях низка.

Кроме того, при достаточно больших величинах измеряемого тока замыкания срабатывают электромагнитные расцепители автоматических выключателей, у которых проверяется согласование характеристик с параметрами цепи «фаза-нуль» (при номинальных токах автоматических выключателей менее 25 А это происходит практически всегда).

Данное обстоятельство приводит к временному обесточиванию электроустановок и нарушению производственных технологических процессов.

Одним из недостатков данного прибора является также ненормированная погрешность измерений в диапазоне токов однофазных замыканий от 1000 до 2000 А, что не обеспечивает достоверности результатов измерений в этом диапазоне.

Вышеперечисленных недостатков лишены малогабаритные цифровые измерители параметров цепи «фаза-нуль» «Вектор», разработанные в Учебно-методическом и инженерно-техническом центре Мосгосэнергонадзора (ныне Московский институт энергобезопасности и энергосбережения), и импортные аналогичные приборы серии «MZC». Принцип действия этих приборов основан на поочередной нагрузке исследуемой сети двумя эталонными сопротивлениями: активным и реактивным (емкостным). При этом тестирующий ток составляет порядка 20 А (в зависимости от реального напряжения в сети), а отношение потерь напряжения к тестирующему току в первом случае (D U 1 / I т) с достаточной степенью точности равно активной составляющей комплексного сопротивления цепи «фаза-нуль»; а во втором (D U 2 / I т) - реактивной составляющей той же цепи «фаза-нуль».

Здесь D U 1 и D U 2 - разности действующих значений напряжений сети до подключения и после подключения эталонных, соответственно, активной и реактивных нагрузок.

Эти измерения и последующие вычисления осуществляют микропроцессоры, после чего на мини дисплей прибора выводятся: напряжение сети, модуль комплексного сопротивления исследуемой цепи «фаза-нуль», ток однофазного замыкания и разность фаз между током и напряжением.

Если потребители включены через УЗО, то измерения следует проводить по участкам цепи «фаза-нуль» по методике, изложенной в п. 6.2.

При этом сопротивление участка цепи, находящегося под напряжением, определяется по измеренному току однофазного замыкания (на входных контактах УЗО) и фазному напряжению.

7.2. Оценка качества монтажа сетей по результатам измеренных параметров цепи «фаза-нуль»

Измерение параметров цепи «фаза-нуль» целесообразно производить приборами, позволяющими измерять разность фаз между током и напряжением («Вымпел», «Вектор», «MZC»), т.к. по этой разности фаз, характеризующей величину реактивной составляющей полного сопротивления цепи «фаза-нуль», можно оценить качество монтажа электрических сетей, существенно влияющего на токи однофазных замыканий.

Это актуально при прокладке распределительных сетей одножильными проводами и кабелями больших сечений, не находящихся в одной оболочке. Как известно, индуктивность отдельно проложенных одножильных проводов и кабелей составляет от 0,73 × 10-3 (при сечении 6 мм2) до 0,57 × 10-3 (при сечениях > 120 мм2) Гн. Для жил проводов и кабелей, находящихся в одной оболочке (жгуте), эта индуктивность компенсируется распределенной емкостью между жилами, а также бифилярностью рядом расположенных проводников*. При этом основной составляющей комплексного сопротивления цепи «фаза-нуль» будет активная составляющая. Для несожгутованных фазных и нулевых защитных проводников при прокладке сети одножильными проводами и кабелями малых сечений в модуле комплексного сопротивления этой цепи будет также преобладать активная составляющая за счет большого активного сопротивления проводников малого сечения, т.к. распределенная индуктивность незначительно зависит от сечения проводника. Влияние индуктивности отдельно проложенных фазных и нулевых защитных проводников больших сечений на токи однофазных замыканий рассмотрим на примере распределительной сети секции многоэтажного здания, выполненной одножильными проводами или кабелями с медными жилами сечением 240 мм2 протяженностью около 50 м.

* Для сравнения: полное индуктивное сопротивление трехжильного кабеля сечением 120 мм2 составляет 0,0602 Ом/км, а отдельно проложенного провода того же сечения - 0,18 Ом/км, что для двухпроводного участка цепи (L, РЕ) в 6 раз больше, чем у кабеля.

При этом XL = 2 pfL, где: XL - индуктивная составляющая сопротивления фазного и нулевого защитного проводника. При суммарной их длине 100 м, L = 0,57 × 10-4 Гн, a XL = 0,018 Ом. При этом активная составляющая сопротивления этих проводников

Как видно, индуктивная составляющая сопротивления в 2,4 раза выше активной, а модуль комплексного сопротивления

что почти в 2,6 раза больше активной составляющей.

Для определения полного сопротивления петли «фаза-нуль» прибавим к этой активной составляющей сопротивление питающего кабеля (~ 0,0025 Ом) и одной фазы питающего трансформатора (ТМ-1000, D / Yo, = 0,0087 Ом) и произведя аналогичные вычисления получим полное Z фо = 0,0259 Ом. Величина расчетного тока однофазного замыкания составит 8462 А.

Если проводники рассматриваемой сети входят в состав кабеля или хорошо сожгутованы и распределенная индуктивность скомпенсирована бифилярностью и емкостью между ними, то в расчетном Z ф o индуктивной составляющей сопротивления можно пренебречь. Тогда Z фо = 0,0075 + 0,0025 + 0,0087 = 0,0187 Ом и расчетный ток однофазного замыкания составит 11765 А, что в 1,4 раза больше предыдущего.

В процессе измерений недостатки монтажа выявляются по большей величине разности фаз между током и напряжением в режиме однофазного замыкания. Отношения реального тока однофазного замыкания к максимально возможному в зависимости от этой разности фаз приведены в табл. 18.

Таблица 18



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 103; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.174.168 (0.024 с.)