Обитаемость сельскохозяйственных сооружений 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Обитаемость сельскохозяйственных сооружений



     1.1 Понятие обитаемости

     К объектам сельскохозяйственного назначения см.  относят: жилые, коммунально - бытовые, производственные помещения; сооружения для содержания скота и птицы; теплицы; зерно – и овощехранилища; кабины транспортных средств; фургоны для перевозки продуктов сельскохозяйственного производства и др. В этих объектах необходимо поддерживать оптимальные условия для производственной деятельности и отдыха людей; наивысшей продуктивности животных и растений; сохранности продуктов питания и сырья.

Совокупность условий, обеспечивающих жизнедеятельность человека  

 и жизнеспособность других организмов, именуют о б и т а е м о с т ь ю.    

    Обитаемость объекта зависит от множества факторов, которые возможно сгруппировать в природные, физические, технические и психобиологические.

    К природным факторам относят: географическое место объекта, время года, часть суток, метериологические условия, наличие различных катаклизмов.   

    Физические факторы включают: состав воздуха, его температурно - влажностный режим, освещенность объекта, вибрацию, воздействие акустических и электромагнитных полей.

    Технические факторы: это форма и размер сооружения, система отопления и вентиляции, санитарно-гигиеническое обеспечение, скорость перемещения воздуха, интерьер, информационное обеспечение.

    К психобиологическим факторам относят: режим труда и отдыха,  индивидуальную совместимость, наличие грызунов и различных микроорганизмов.

    Из перечисленных факторов в сферу компетенции теплотехники входят немногие, но немаловажные для жизнедеятельности человека и других живых организмов. К ним относят: состав и скорость перемещения воздуха внутри объекта, температурно-влажностный режим в нем.

  В закрытых сооружениях состав воздуха подвержен существенным изменениям. Так в процессе жизнедеятельности человека, животных, птиц, растений, овощей выделяются углекислый газ, аммиак, сероводород; при проведении различного рода работ в воздух могут попадать соединения хлора, фтора, азота; в негерметичные помещения могут подсасываться продуты сгорания различных веществ, пары различных жидкостей, пыль.  

    Температура воздуха в помещении определяется условиями тепломассопереноса в пространстве. В процессе изменения температуры участвуют нагревательные приборы, ограждения сооружений, солнечная радиация, технологические процессы, все живые организмы, окислительно - восстановительные реакции отходов животноводства и птицеводства и т.д.

    Содержание влаги в воздухе зависит не только от метеорологических условий. Значительное количество водяных паров выделяют в процессе жизнедеятельности человек, животные, птицы, продукты сельскохозяйственного производства. Много влаги выделяется при запаривание кормов, в мойках, кухнях, душевых и т.п.

    Внутри помещения всегда можно обнаружить различной интенсивности потоки движущегося воздуха. Их причиной являются искусственно созданные напоры, либо естественная конвекция, возникающая при изменении температуры по высоте помещения.

    В медицине рассматривают четыре уровня нормативов к обитаемости сооружений: оптимальный, рабочий, предельно допустимый и критический  (предельно переносимый). Эти уровни подробно проанализированы в

 Так, оптимальный уровень оказывает наиболее благоприятное воздействие на его организм человека, создает условия для максимальной производительности труда. Рабочий (допустимый) уровень хотя и вызывает некоторое напряжение организма, но не приводит к нарушению здоровья и заметному снижению работоспособности. Предельно допустимый уровень возможен в тех случаях, когда предполагается эпизодическое пребывание человека в неблагоприятных условиях и характер работы допускает временное снижение уровня работоспособности. Критический уровень допускается только в аварийных ситуациях, когда нормальная трудовая деятельность заменяется необходимостью спасения человека.

 

   1.2. Теплотехнические требования к условиям обитаемости

    Максимальные производительность труда человека, продуктивность животных и птицы, урожайность овощей и фруктов в теплицах, сохранность                                                    

продуктов сельскохозяйственного производства на складах и хранилищах определяются незначительным диапазоном величин, характеризующих состав воздуха, его температуру, относительную влажность и скоростью движения. Этот диапазон величин для каждого живого организма различен.

   Требования  к составу воздуха обусловлены физиологическими особенностями орга­низма человека.  Живой  организм может нормально функционировать только при условии, что его ткани и органы получают строго определенное, завися­щее от нагрузки, количество кислорода. Для обеспечения нормальной жиз­недеятельности человека требуется не менее 0,23 л кислорода в минуту. Дос­тавка кислорода тканям осуществляется главным образом через легкие в процессе дыхания и частично через поверхность кожи.

    В процессе дыхания кислород связывается с гемоглобином крови и разносится по всему организму. Достигая клетки, кислород освобождается от гемоглобина и в результате сложных химических реакций превращается в углекислый газ, который затем удаляется из организма, транспортируясь к легким тем же гемоглобином. Таким образом, человек поглощает из воздуха кислород и  выделяет углекислый газ.

      В процессе дыхания человек поглощает только незначительную часть содержащегося во вдыхаемом воздухе кислорода (около 20%). Так, если вдыхаемый человеком воздух содержит  21 %  кислорода, 0,04 % углекислого газа

 и  различное количество водяного пара, то выдыхаемый воздух включает 15,3…18 % кислорода, 2,5…5 % углекислого газа, насыщенный водяной пар и имеет температуру  35…37 °С.  Процесс ды­хания  сопровождается образованием в организме  человека теп­лоты в количестве 19,7…21,2 кДж на литр кис-

лорода, перешедшего в угле­кислый газ.

Химический состав сухого атмосферного воздуха представлен в табл. 1. 1. Содержание углеки­слого газа в помещениях, где находятся люди, может быть более значительным. Накопление углекислого газа в воздухе в больших концентрациях и длительное пребывание людей в такой атмосфере может привести к появлению головной  боли, головокружения, слабости, по­тере чувствительности и даже потере сознания.

 

Таблица 1.1 – Газовый состав сухого атмосферного воздуха при р = 1 бар

Составные части воздуха Химическая формула q i – мас- совая доля ri – объем- ная доля рi–парциальное давление, бар
Азот N2 0,7553 0,7808 0,7808
Кислород O2 0,2314 0,2095 0,2095
Аргон Ar 0,0128 0,0093 0,0093
Углекислый газ CO2 0,0004 0,0003 0,0003
Прочие газы – неон, гелий и др. Ne, He 0,0001 0,0001     0,0001

 

   Наличие в воздухе различных примесей оказывает вредное воздействие на живые организмы, оборудование, материалы и технологические процессы. Попадая даже в небольших количествах в организм человека через дыхательные пути, кожу и пищеварительный тракт, газы и пары вредных веществ могут вызывать отравление. Физиологическое влияние вредных примесей зависит от их токсичности и концентрации в объекте обитания, а также от времени их воздействия. Полное удаление из воздуха вредных включений связано с большими трудностями. Поэтому приходится допускать некоторое количество вредных примесей в воздухе помещений. Нормы п р е д е л ь н о д о п у с т и м ы х к о н ц е н т р а ц и й (ПДК) вредных примесей в воздухе регламентируются ГОСТ 12. 1.005-76 и СН 245-71. В табл. 1.2 приведены ПДК некоторых вредных для человека веществ в воздухе рабочей зоны.

Таблица 1.2 –  Предельно допустимые для человека концентрации веществ

Вещество ПДК мг/м3 Вещество ПДК мг/м3
Фреон - 22 3000 Поливинилхлорид 6
Керосин 300 Спирт метиловый 5
Бензин 100 Серная кислота 1
Масла минеральные 50 Хлор 1
Аммиак 20 Озон 0,1
Оксид углерода (СО) 20 Фтор 0,5
Сероводород 10 Фосген 0,5
Окислы азота 6 Тетраэтилсвинец 0,005

 

   Наличие в воздухе пыли нежелательно или даже опасно для человека. Пыль образуется в результате измельчения и подъема в воздухе грунта, покрытий дорог, мусора и т.д. Кроме того пыль может выбрасываться промышленными предприятиями, котельными и т.п. Пыль, находящаяся в наружном воздухе, в общем, обладает тонкой дисперсностью и характеризуется размером 5…10 мк. Допустимая концентрация пыли в воздухе установлена ГОСТ 12. 1. 005-76.

   Организм человека можно рассматривать как саморегулирующуюся систему, поддерживающую постоянную температуру внутренней среды путем удаления избытка тепла поверхностью тела. По разным источникам, человек в состоянии относительного покоя отдает в окружающую среду теплоту путем конвективного теплообмена – 14 … 32, путем излучения – 44…59, испарением влаги с поверхности тела – 21…30 %. Любая степень дискомфорта по причине уменьшения или увеличения температуры характеризуется развитием процессов торможения в коре головного мозга, вызывающих снижение работоспособности.

    Понижение температуры воздуха относительно комфортной приведет к интенсификации теплообмена человека со средой путем конвекции, излучения и испарения. Система терморегуляции организма отреагирует на эти изменения: подвод тепла на сохранение температуры тела повысится, а теплопередача вследствие спазмы сосудов, особенно конечностей, снизится. Это состояние неустойчиво и при дальнейшем снижении температуры окружающей среды может привести к нарушению теплового равновесия, при котором понизится температура организма, что влечет к летальному исходу.

       При повышении температуры среды, окружающей человека, теплоотдача конвекцией и излучением снижается. Для поддержания температуры организма неизменной система терморегулирования интенсифицирует потоотделение. Теплообмен испарением превышает 50 % от общего теплоотвода и составляет при температуре 28 0С  в состоянии покоя  64 %, а при 35 0С – более 90 %. Водопотери организма при этом могут достигать 500…2000 г/ч. Часть пота, не успевая испариться, стекает (профузное потоотделение). В таком состоянии система терморегуляции также неустойчива, возможен перегрев организма, при этом возрастает частота сердечных сокращений, появляется слабость и чувство беспокойства.

    Влажность воздуха оказывает существенное влияние на теплообмен: с повышением влажности теплообмен испарением снижается.

    Подвижность воздуха влияет на теплоотдачу человека, а также на испарение влаги с тела.

    В сооружениях для содержания животных и птицы, в складах и овощехранилищах, в теплицах имеют место специфические температурно - влажностные условия. От животных теплота передается внутренним поверхностям ограждений как излучением, так и конвекцией. Конвекцией и излучением осуществляется теплообмен с поверхности почвы в сооружениях защищенного грунта. Биохимические процессы в подстилке, навозе и помете, гниение овощей и фруктов являются источниками дополнительной теплоты и вредных газов. Источником выделения влаги являются животные и птицы, поилки, открытые поверхности жидкости и т.п. На складах и хранилищах влага выделяется в результате жизнедеятельности зерна, овощей, фруктов. В теплицах влажность изменяется за счет испарения с листьев и грунта. Условия обитаемости должны обеспечить для животных и птицы максимальную их продуктивность, а для продуктов сельскохозяйственного производства – максимальную их сохранность.

    Сочетания температуры, относительной влажности и скорости движения воздуха, соответствующие комфортному состоянию человека в рабочей зоне производственных помещений, приведены в табл. 1.3. Требования СНиП к параметрам воздуха внутри помещения для человека и при  содержании животных и птицы показаны в Приложении, таблицы 1, 3 и 4.

 

Таблица 1.3 – Параметры комфортных условий для человека

Сезон года Категория работ. энергозатраты t, 0C φ,% с, м/с

Холодный и

переходный

периоды года

 

Легкая, до 170 Вт 20…23 60…40 0,2
Средней тяжести - А, 170…230 Вт 18…20 60…40 0,2
Средней тяжести - Б, 230…290 Вт 17…19 60…40 0,3
Тяжелая, свыше 290 Вт 16…18 60…40 0,3

Теплый период года

Легкая, до 170 Вт 22…25 60…40 0,2
Средней тяжести - А, 170…230 Вт 21…23 60…40 0,3
Средней тяжести - Б, 230…290 Вт 20…2 60…40 0,4
Тяжелая, свыше 290 Вт 18…20 60…40 0,5

 

    В процессе эксплуатации сельскохозяйственных сооружений оптимальный, чаще всего рабочий, уровень обитаемости поддерживаются системами теплоснабжения и вентиляции, в отдельных случаях – системами кондиционирования.

Глава 2

Источники энергии

     Под и с т о ч н и к о м э н е р г и и следует понимать материальное тело  (или тела),  доля энергетического потенциала которого может быть передана другим объектам.

     При производстве сельскохозяйственной продукции, ее переработке, хранении, в обеспечении бытовых и технологических процессов используются различные виды энергии. Это химическая энергия топлив, солнечная энергия, электрическая энергия, внутренняя энергия окружающей среды и др.  Формой передачи энергии от её источника к потребителю является в большинстве случаев теплота. Теоретические основы и особенности взаимопреобразование различных видов энергии с участием теплоты подробно рассмотрены в  

     Источники энергии в подавляющем случае природного происхождения. Часть из них извлекают из недр Земли или вод Мирового океана, их запасы постепенно уменьшаются. Это так называемые н е в о з о б н о в л я е м ы е источники энергии. Другая часть природных источников энергии  имеет хотя и непостоянную концентрацию по месту и времени, но постоянно в о –

з о б н о в л я е м у ю энергию: солнечное  излучение, энергия движения вод в морях и океанах, энергия движения воздуха в атмосфере и т.д.

     К источникам энергии искусственного происхождения относят вещества созданные человеком, например, бензин, спирт, кокс и др.

     2.1. Невозобновляемые источники энергии

     2.1.1.  Энергия химических топлив

         Т о п л и в о м, строго говоря, следует называть вещество или сово-

         купность     веществ, энергия связи микрочастиц которых поддается

          освобождению,

      В теплоэнергетике наиболее распространенными являются химические топлива. Горение химических топлив включает окислительно - восстановительные реакции, в результате которых происходит перераспределение энергетических связей между элементами, участвующими в реакции.

Химические элементы, подвергающиеся окислению в процессе сгорания, принято называть горючими.

Химические же элементы, которые в процессе реакции восстанавливаются, называют  окислителями.

К горючим элементам относят углерод (С), водород (Н), алюминий (Al),  литий (Li) и др.

К элементам, способным восстанавливаться, относят кислород (O),

фтор (F), хлор (Cl).

Как те, так и другие элементы могут входить в химические соединения, обладающие либо свойствами горючих, либо свойствами окислителей. Так, этиловый спирт C2 H5 OH, включающий углерод, водород и кислород, используется в качестве горючего, а воздух, состоящий из кислорода и инертного азота, применяется как окислитель.

Совокупность горючего и окислителя называют химическим топливом, а его составляющие – компонентами.

Компоненты топлива не всегда можно представить молекулярной формулой. Однако во всех случаях состав горючего, окислителя или топлива в целом можно задать, если воспользоваться у с л о в н о й химической формулой,  Условной ее называют потому, что рассматривается компонент или топливо с условной молярной массой, равной 1000 г/моль. Тогда один моль рассматриваемого вещества будет равен 1кг массы. Так соединение, состоящее из углерода, водорода, кислорода, азота имеет в общем виде условную химическую формулу Сbc Hbh Obo Nbn. Здесь индекс у химического элемента означает число грамм-атомов этого элемента в соединении.

Число грамм-атомов   bi   i -го элемента в условной формуле определяется по соотношению

                                     bi = 1000,                                                     (2.1)

где qi  – массовая доля i -го элемента в химическом соединении;

    Ai – атомная масса i -го элемента.

     Массовая доля элемента в компоненте находится опытным путем. Если компонент задан химической формулой, то для определения qi  исполь- зуется выражение

                                             qi =  ,                                                   (2.2)

где    zi  – число атомов i -го элемента в молекуле компонента.

    Для примера химическую формулу воды H2O переведем в условную формулу. Используя выражение (2.2), вычислим массовые доли водорода и кислорода в воде.

qн =    и qo = .

     

 По формуле (2.1) определим число грамм- атомов водорода и кислорода.

bн =       и     bo = .

Отсюда условная химическая формула воды будет иметь вид: H111 O55,6.

    Условная  химическая   формула воздуха записывается выражением N52,91 O14,48, а бензина – C72,25 H133.

При расчете условной формулы топлива важно знать соотношение между горючими и окислительными элементами. Это соотношение характеризуется  стехиометрическим коэффициентом.

Под массовым стехиометрическим коэффициентом понимают наименьшее теоретически необходимое количество килограммов окислителя, потребное для полного окисления одного килограмма горючего.

Обозначают массовый стехиометрический коэффициент К0 и измеряют в , где  (ок - окислитель, г - горючее).

При стехиометрическом соотношении предполагается использование полных валентностей химических элементов.

Формула для определения К0 имеет вид:

                                 К0 = –  ,                             (2.3)

где  – валентность  i -го  элемента,  которая выбирается из табл. 2.1

с ее знаком;

    bi – число грамм-атомов i -го элемента в условной химической формуле.

 

Таблица 2.1 – Валентность некоторых химических элементов

Элемент Валентность

Элемент

Валентность
H +1

O

-2
Li +1

F

-1
Be +2

Na

+1
C +4

Al

+3
N 0

Cl

-1
      Mq

         +2

         S         +4
         

 

Если действительное количество окислителя, подаваемое для сгорания 1 кг горючего, отличается от теоретически необходимого, то такая смесь  будет характеризоваться  действительным коэффициентом соотношения компонентов, обозначаемым   К:

                                        K = .                                               (2.4)

Отличие действительного соотношения от стехиометрического оценивается коэффициентом избытка окислителя, который равен

                                   .                                    (2.5)

      При >1 топливо содержит избыток окислителя, а при < 1 –  избыток горючего.

      В настоящее время в теплоэнергетике широко используются химические топлива состава: окислитель – атмосферный воздух; горючее – добываемые из недр вещества органического происхождения, которыми являются уголь, нефть, природный газ. 

     Антрацит, каменный и бурый уголь, торф, сланцы, дрова – относят

к твердым горючим естественного происхождения. Твердые горючие искусственного происхождения это кокс, древесный уголь, брикеты из древесных и растительных отходов.     

      Нефть – жидкое органическое горючее естественного происхождения. Из нефти путем ее переработки (принципиальная схема переработки нефти приведена на рис. 2.1) получают бензин, керосин, мазут и др., см.  Последние являются органическими горючими искусственного происхождения.

     Природные и попутные нефтяные газы (метан, этан, пропан, бутан) прекрасные органические горючие естественного происхождения. К искусственным газообразным горючим относятся генераторные газы (воздушной, водяной, подземной газификации), побочные газы (доменный, крекинговый).

      Обычно энергия химического топлива освобождается в процессе горения в форме теплоты.  Количество теплоты, выделившееся при сгорании

1 кг топлива, называют т е п л о т о й с г о р а н и я т о п л и в а, обозначают Qв  и измеряют  в Дж/кг.  Если  в качестве окислителя используется воздух, то выделившееся тепло относят только к массе горючего. В большинстве случаев не удается использовать всю теплоту Qв.  поскольку часть ее уносится с парами воды в продуктах сгорания в виде скрытой теплоты парообразования Qw. Поэтому теплоту сгорания   Qв называют в ы с ш е й, а разность

Qн = Qв – Qw – н и з ш е й т е п л о т о й с г о р а н и я.

     В табл. 2.2 приведены значения Qн при сгорании в воздухе  ряда го-

рючих.

Таблица 2.2 – Низшая теплота сгорания некоторых горючих в воздухе

Горючее Qн, МДж/кг
Нефть 40 … 46
Бензин 44 … 48
Дизельное горючее 42 … 45
Мазут 39 … 42
Природный газ 33 …40
Генераторный газ   5 …  6,5
Каменный уголь 25 … 27
Дрова 12 … 19
Торф 4 … 12

     Для сравнительной оценки энергоресурсов различных источников введен единый эквивалент – у с л о в н о е т о п л и в о (у. т.). Расчетная теплота сгорания условного топлива равна 29,308 МДж/кг.

     Технология получения искусственного углеводородного горючего из природной нефти объясняется рисунком 2.1.

       

Рис. 2.1. Принципиальная схема переработки нефти

 

       Сырую нефть обезвоживают, удаляют из нее попутные газы, а затем нагревают до 350 0С. Далее смесь паров и горячей нефти в ректификационной колонне при атмосферном давлении разгоняют на фракции: бензиновую (около 15%,   tк = 30…180 0С); керосиновую   (около 17%,   tк   = 150 …280 0С); газойлевую и соляровую (около 18%, tк = 280 … 350 0С). Жидкий осадок с температурой начала кипения 330 … 350 0С называется мазутом.

     2.1.2 Ядерная энергия

     Ядерная энергия – энергия связи нуклонов в ядре, освобождающаяся в различных видах при делении тяжелых и синтезе легких ядер. В последнем случае её принято называть «термоядерной».

     Промышленное использование ядерной (атомной) энергии стало возможным благодаря осуществлению искусственно регулируемого процесса расщепления ядер, которое происходит в результате бомбардировки нейтронами атомов делящегося вещества – я д е р н о г о т о п л и в а. Устройства, в которых протекает управляемая самоподдерживающаяся ядерная реакция называют  я д е р н ы м и (атомными) р е а к т о р а м и.

     В качестве ядерного топлива применяют в основном природный уран. Природный уран – это смесь трех изотопов с атомными массами 238, 235 и 234. Основная часть массы в количестве 99,28% приходится на долю U238 и только 0,714% – U235; 0,006% – U234. Из этих изотопов непосредственно используется  U235, так как его ядра расщепляются под воздействием нейтронов любой энергии. Практическое использование U238 возможно при его обогащении ураном U235.  С целью воспроизводства ядерного топлива на специальных заводах осуществляется сложнейший процесс  разделения изотопов.

В реакторах на быстрых нейтронах из U238 получают новый делящийся материал – плутоний  Pu239, а из тория Th232 – уран U233. Таким образом, количество ядерного топлива существенно увеличивается. По расчетам специалистов ядерные энергоресурсы можно увеличить в 15–25 раз.

    При делении ядра U235 освобождающаяся энергия распределяется между различными продуктами деления следующим образом, МэВ:

    – кинетическая энергия осколков деления...... ……. 168;

    – энергия нейтронов деления................. ……….   5;

    – энергия мгновенного - излучения........... …….. 5;

    – энергия - распада....................... ……….   7;

    – энергия фотонов - распада осколков деления.. …… 6;

    – энергия нейтрино.......................... ……. 11.

                                                 В с е г о............... …   220

     Энергия, уносимая нейтрино, не может быть уловлена.

     Кинетическая энергия осколков деления в теплоносителе преобразуется в теплоту. Так  1 кг ядерного топлива обеспечивает получение мощности

2000 кВт в течение года.

     Ядерное топливо применяется в реакторах в виде металлических стержней, которые обладают высокой эффективностью использования нейтронов, хорошей теплопроводностью, значительным сопротивлением термическим ударам (внезапным изменениям теплового режима при выключении и включении реактора). Но твердое металлическое ядерное топливо имеет и ряд недостатков: низкую температуру плавления (tпл = 1133 0С), малую прочность и др. Эти недостатки в меньшей мере присущи различным видам керамического ядерного топлива – двуокиси урана UO2 (tпл = 2800 0С), карбиду урана UC  (tпл = 2700 0С) и др.

    По мимо твердых, на базе указанных выше делящихся материалов, готовят жидкие и газообразные ядерные топлива.

  Принципиальная схема ядерного реактора, работающего на медленных нейтронах, приведена на рис. 2.2.                                                                                                                                                                                                                                      

Тепловыделяющие элементы (твелы) 1 устанавливаются в активной зоне реактора между замедлителями нейтронов 2.С целью защиты от коррозии и предотвращения разлетания осколков деленияядерное топливоразмещается в оболочке из стали, либо алюминия или циркония. Используемые оболочки, как правило цилиндрической формы. В качестве замедлителя нейтронов используют графит, бериллий, воду и др. Количество поглощаемых нейтронов, а следовательно и мощность реактора регулируется изменением глубины погружения в активную зону регулирующих стержней 3 (материал стержней – бор и кадмий). Большая часть кинетической энергии осколков делящегося ядерного топлива поглощается теплоносителем и нагревает его. Роль теплоносителя могут выполнять жидкие вещества (вода, расплавленный металл) или газы (гелий, воздух). Для защиты от радиоактивных излучений активная зона ядерного реактора ограждена   толстыми (1,5 – 2 м) бетонными стенами 4. Отражатель 5 предотвращает утечку нейтронов из реактора. В настоящее время в мире создано большое количество типов ядерных реакторов, как для стационарных атомных станций, так и для различных транспортных средств. На рис. 2.3 приведена принципиальная схема водоводяной атомной электростанции.

  К достоинствам ядерного топлива относят:

 - высокую удельную энергию;

 - сравнительную простоту доставки к энергоустановкам;

 - отсутствие выбросов в атмосферу вредных газов.

Ограничения в использовании ядерной энергии обусловлены проблемами, возникающими при эксплуатации реакторов, а также относительной дороговизной ядерного топлива и сложностью утилизации его отходов.

 

 


 

     2.2. Возобновляемые источники энергии    

    2.2.1. Солнечная энергия

     Самыми мощными источниками энергии являются  Солнце  и  звезды.

 С поверхности Солнца ежесекундно излучается энергии 3,8·1026 джоулей. Примерно половина этой энергии приходится на видимый спектр излучения, остальная часть –  на инфракрасные и тепловые лучи.

Количество солнечной энергии, падающей на единицу нормальной к лучам поверхности, находящейся за пределами атмосферы, в единицу времени, называется  с о л н е ч н о й  п о с т о я н н о й. Солнечная постоянная зависит от расстояния до Солнца и на верхний слой земной атмосферы приходится в среднем 1353 Вт/м2. До поверхности Земли доходит значительно меньше энергии, так как она поглощается атмосферой, отражается облаками, преломляется в воздухе. Несмотря на это, лучистый поток от Солнца в безоблачный день внушителен. Так, например, солнечная батарея (фотоэлектрический генератор) площадью в  1 м2  с  коэффициентом  полезного   действия

15 % выдает в безоблачный день 0,25 кВт электроэнергии.

Значительная часть солнечной энергии, достигающей Земли, без вмешательства человека участвует в образовании биомассы растений

 (ф и т о м а с с ы). Фитомасса, являясь своеобразным аккумулятором, обладает энергетическим потенциалом, превышающим приблизительно в 20 раз энергию полезных ископаемых земной коры. С участием человека солнечная энергия используется при производстве сельскохозяйственной продукции растительного происхождения. В меньшей степени пока нашло прямое преобразование солнечной энергии в теплоту (тепловые гелиоустановки) и электроэнергию (термоэлектрогенераторы). Эти и другие преобразователи солнечной энергии достаточно подробно изложены в работах [1] и [2].

Важнейшим достоинством солнечной энергии являются ее возобновляемость, безвредность для окружающей среды и отсутствие необходимости в средствах ее доставки. Недостаточное использование солнечной энергии на территории России связано с малой плотностью лучистого потока, его неравномерности из-за смены дня и ночи и перемен погоды. Однако, решение проблем, связанных с концентрацией солнечной энергии и ее аккумуляцией, открывает широкую перспективу для этого вида неисчерпаемой энергии.

 

2.2.2. Энергия движения воздуха в атмосфере

Движение воздуха в атмосфере возникает вследствие неравномерного горизонтального распределения давления, которое, в свою очередь, обусловлено неоднородностью температурного поля у земной поверхности. Горизонтальную составляющую этого движения называют в е т р о м. Ветер характеризуется скоростью и направлением. При скорости 5…8 м/с ветер считается умеренным, свыше 14 м/с – сильным. При шторме скорость ветра порядка 20…25 м/с, а при урагане – 60…80 м/с.

Потенциал энергии ветра колоссален: 96·1021 Дж, что составляет почти 2% солнечной энергии, падающей на землю. Практическое применение имеет энергия умеренного и сильного ветра. В зонах с умеренным ветровым режимом на 1км2 можно получить годовую выработку электроэнергии около 3,6 МДж. 

Использовать энергию ветра человечество научилось давно (парусные суда, ветряные мельницы). В настоящее время ветровые силовые установки в основном применяются для выработки электроэнергии. По данным Всемирной ветроэнергетической ассоциации  WWEA за 2006 г. в мире функционирует более 40 000 ветроэлектрических агрегатов, суммарная мощность которых превышает 73 900 МВт. В ближайшее десятилетие ожидается увеличение мирового объема инвестиций в ветроэнергетику почти в девять раз.

Блок – схема преобразователя кинетической энергии ветра в какие-либо другие виды энергии представлена на рис. 2.4.

 

 

5

 

 


 

 1
4
2
                          

К потре -бителю
3

 

 


2. 4. Блок – схема ветроэнергетической установки:



Поделиться:


Последнее изменение этой страницы: 2020-10-24; просмотров: 58; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.242.165 (0.106 с.)