Дозування компонентів та змішування шихти 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дозування компонентів та змішування шихти



Поточні лінії дозувально - змішувальної ділянки включають:

1) розташовані по горизонтальній осі бункери з готовими до змішування сировинними матеріалами;

2) розташовані під бункерами автоматичні терези з пристроями для завантаження та вивантаження відважених компонентів шихти у відповідності з заданим рецептом;

3) збірний стрічковий конвеєр, який розташовано під терезами, на який висипаються відважені порції сировинних компонентів, призначений для подавання їх у змішувач;

4) змішувач періодичної дії;

5) транспортуючі пристрої для подавання готової шихти до ванної печі.

Для виготовлення шихти використовують підготовлені сировинні матеріали.

Зважування сировинних матеріалів виконують на окремих вагових лініях. Шихту складають з сировинних матеріалів, які повинні відповідати певним вимогам стандартів.

Пісок кварцовий ДСТу 22551-77;

Сода кальцинована ДСТу 5100-85;

Сульфат натрію ДСТу 6318-77;

Доломіт ДСТу 23762-79;

Каолін ДСТу 21285-75;

Крейда ДСТу 12085-88;

Барвники (якщо це потрібно).

Рецепт шихти на заданий хімічний склад скла розраховується лабораторією заводу з урахуванням лужності, вологості сировинних матеріалів. Компоненти шихти відважуються у відповідності до рецепту і в послідовності, яка вказана у рецептурі. Для склотарного цеху послідовність від важення сировинних матеріалів наступна: – пісок, каолін, сода, сульфат натрію, крейда, доломіт, вода.

Вагове дозування компонентів шихти проводиться на дозуючих лініях, які оснащенні вагами ДВСТ. Припустимі відхилення по вазі окремих компонентів шихти вказані у таблицях 4.1 – 4.3. Приготована шихта повинна забезпечувати отримання зеленого скла хімічного складу, який також наведено в таблицях 4.1 – 4.3.

Таблиця 4.1 – хімічний склад зеленого скла

SiO2 Al2O3 Fe2O3 СаО+MgО Na2O SO3 Cr2O3
71,2 1,8 0,3 12,2 14,2 0,3 0,15
±0,5% ±0,5% ±0,04% ±0,2% ±0,2% ±0,02% ±0,02%

Таблиця 4.2 – хімічний склад оливкового скла

SiO2 Al2O3 Fe2O3 СаО+MgО Na2O SO3 Cr2O3
71,2 1,8 0,3 12,2 14,2 0,3 0,1
±0,5% ±0,5% ±0,04% ±0,2% ±0,2% ±0,02% ±0,02%

Таблиця 4.3 – хімічний склад коричневого скла

SiO2 Al2O3 Fe2O3 СаО+MgО Na2O SO3
71,2 2,8 0,3 11 14,3 0,3
±2% ±1,3% ±0,04% ±1,3% ±0,9% ±0,02%

На шляху до печі розташовано резервні бункери для готової шихти, які розраховано на дві зміни роботи печі.

4.4. Завантажування шихти[2]

Завантаження шихти у скловарну піч здійснюється за допомогою механічних завантажувачів плунжерного типу. Принцип дії завантажувача полягає у регулярному проштовхуванні порцій шихти і бою в піч за рахунок зворотного – поступово руху плунжера. Шихту завантажують по всьому фронту завантажувального кармана, ширина якого у сучасних печах практично дорівнює ширині печі. Для спрощення конструкції та обслуговування заванжувачів їх встановлюють 5-6 заванжувачів поряд. Режим живлення печі шихтою та боєм виконується у відповідності до витрат скломаси на виготовлення виробів. Годинна подача шихти та бою в піч повинна точно відповідати з`єму скломаси. Співвідношення завантаженої шихти і склобою повинно знаходитися у межах: шихти-бою70-30%, 60-40%, 50-50%. Відхилення від встановленого співвідношення не повинно перевищувати ±5%.

Якщо об’єм подавання шихти буде відрізнятися від з’єму скломаси, то це приведе до коливання рівня дзеркала в печі. В свою чергу це негативно впливає на стан футерівки і якість скломаси, що виробляється. Коливання рівня скломаси повинні складати не більше ніж ±0,5мм.

Для підтримання постійного рівня скломаси завантажувальники працюють в автоматичному режимі і зв‘язані з рівнеміром “клюючого” типу.

4.5. Варіння скломаси[2],[3]

Процес варіння скла уявляє собою складний комплекс фізико – хімічних перетворень, явищ тепло та масообміну, в результаті яких сировинні матеріали – шихта перетворюється у розплав – скломасу із визначеними фізико – хімічними властивостями. Шихта під дією високих температур, які виникають під час спалення палива, розплавляється, гомогенізується, охолоджується та поступає на виробляння.

Процес склоутворення протікає в декілька етапів.

Силікатоутворення. До кінця цього етапу у шихті не залишається окремих компонентів. Більшість газоподібних компонентів вже видалено, складові частки перетерпіли ряд фізичних та хімічних перетворень. Між компонентами шихти пройшли всі основні твердофазні реакції і вона уявляє собою спечену масу, яка складається з силікатів та оксиду кременю.

Склоутворення. Цей етап характеризується тим, що наприкінці етапу скломаса стає прозорою. В ній вже відсутні не проварені частки шихти, адже вона ще пронизана великою кількістю бульбашок та звивин і залишається неоднорідною. Для звичайного тарного скла цей етап скінчається при 1150-12000С. На цьому етапі проходить забарвлення скла. Забарвлення здійснюється у відновлювальних умовах, які забезпечуються введенням вугілля. Скло набуває коричневого кольору внаслідок утворення в ньому FeS по реакції, яку у загальному вигляді можна записати:

                    

FeS – молекулярний барвник, має добрі захисні властивості по відношенню до променів короткохвильової частини спектра, тому забарвлення сульфідом заліза широко використовують у виробництві пляшок для пива, склотари для дитячого харчування, медичної тари та ін. [2].

Освітлення. На цьому етапі скломаса стає менш в’язкою, звільняється від видимих газоподібних включень. Для тарного скла освітлення закінчується при 1400-15000С. В’язкість скломаси при цьому складає близько 10-12Па*с.

Гомогенізація. Процес гомогенізації дуже важливий. В скловарних печах для тарного скла гомогенізація повинна проходити дуже швидко тому, що виробництво характеризується великими з`ємами.

На цьому етапі скломаса інтенсивно перемішується за допомогою бурління. До кінця цього етапу скломаса звільняється від звивин, стає однорідною. Бурління скломаси стисненим повітрям дозволяє підвищити виробництво печей та покращити якість скломаси. Однак бурління застосовують лише на печах для варіння темно-зеленого та коричневого скла. Сопла розташовуються в зоні чистого дзеркала скломаси. Кількість сопел залежить від потужності печі. Кількість сопел може становити від 7 до 13. Якщо кількість сопел дорівнює 7, то вони розташовані в ряд, якщо кількість сопел дорівнює 13,то розташовані вони у шаховому порядку.

Охолодження скломаси. В’язкість провареної скломаси дуже низька для виробки виробів. Тому для того, щоб можна було відформувати вироби необхідно знизити температуру приблизно на 200-3000С порівняно з температурами освітлення та гомогенізації. Охолодження скломаси протікає до температури 12000С для створення необхідної в‘язкості при формуванні виробів.

Дуже важливо, щоб під час охолодження не виникало порушення рівноваги між розплавом та газами. В цьому випадку виникають пороки – бульбашки та вторинна „мошка”, звільнитися від яких практично не можливо тому, що в’язкість скломаси вже висока.

Ванна скловарна піч представляє собою складний теплотехнічний агрегат, конструкція якого залежить від способу підігріву, напрямку руху димових газів, способу розділення басейну та полум’яного простору. Вона складається з робочої камери, пальників, пристроїв для використання тепла димових газів, перевідних клапанів, фундаментів, опор та каркасу. Напрямок руху газів в великих регенеративних печах поперечний, а в малих – підковоподібне або поздовжньо – поперечне. При виробці склотари звичайно використовують скловарні печі з поперечним напрямком руху полум’я, бо вони дозволяють краще регулювати тепловий режим по довжині печі, створювати необхідні теплові умови в зонах варіння, освітлення та гомогенізації. Схема печі представлена на рисунку 4.4.

 

 

Рисунок 4.4. - схема регенеративної ванної печі з протоком з поперечним напрямком полум’я.

В регенеративних печах з поперечним рухом полум’я можна використовувати секційні регенератори, які дозволяють регулювати температуру підігріву повітря для відповідного пальника. Найбільш продуктивними є проточні печі з пристроєм для бурління скломаси, без виробного басейну. Крім того процес перемішування та освітлення протікає у тонкому шарі скломаси. Перемішування скломаси в зоні варіння бурлінням дозволяє прискорити процеси силікато – і склоутворення. Тонкошарове освітлення дозволяє здійснити більш кращий прогрів скломаси і інтенсифікувати процес. Завдяки цьому прямоточні печі забезпечують високу продуктивність при досить невеликих розмірах.

Основною вимогою до конструкції високопродуктивних промислових скловарних печей з полум’яним прогрівом - забезпечення високотемпературних режимів варіння скла до 1600-16500С. Цьому повинні відповідати конструкції завантажувальних кишень, газопальникових пристроїв і протоків.

Завантажувальні кишені повинні бути закритими, для попередження вибивання факелу та підсмоктування холодного повітря. Особа увага повинна приділятися до раціонального розміщення факелу та високому ступеню прогріву повітря(до 1400-4500С).

Для варіння скломаси вибираємо ван­ну скло­ва­р­ну піч без­пе­ре­р­в­ної дії, ре­ге­не­ра­ти­в­ну, про­то­ч­ну, з по­пе­ре­чним на­пря­м­ком ру­ху по­лу­м’я. Піч має п’ять пар па­ль­ни­ків. Ба­сей­ни ва­ри­ль­ної та ро­бо­чої ча­с­тин по­єд­на­ні про­то­ком.

Технічна характеристика скло­ва­р­ної печі[5]

Кла­д­ка ван­ної пе­чі

Ба­сей­ни ва­ри­ль­ної та ро­бо­чої ча­с­тин, від­по­ві­да­ль­ні

конс­тру­к­ції – вльо­ти, про­ток, ар­ка то­р­це­вої сті­ни                                                     ба­кор.

По­лу­м’я­ний про­с­тір ва­ри­ль­но­го про­с­то­ру                                                      ба­кор;

Ро­бо­ча ча­с­ти­на                                                                                                    ди­нас;

Дно пе­чі                                                                                               ша­мот, ба­ко­ро­ва пли­т­ка

Го­ло­вне зве­ден­ня та зве­ден­ня

ро­бо­чої ча­с­ти­ни, зве­ден­ня ре­ге­не­ра­то­рів                                                         склоди­нас;

Ре­ге­не­ра­то­ри                                                                                                       ди­нас, ша­мот

На­са­д­ка                                                                                                                            ша­мот.

Ва­рін­ня за­без­пе­чу­єть­ся спа­лю­ван­ням га­зу у над­ли­ш­ку по­ві­т­ря α=1-1,2. по­ві­т­ря про­пу­с­ка­єть­ся крізь ре­ге­не­ра­то­ри де во­но пі­ді­грі­ва­єть­ся до те­м­пе­ра­ту­ри 9000С. Якість про­ва­рю­ван­ня за­без­пе­чу­єть­ся си­с­те­мою ба­р­бо­ту­ван­ня. На пе­чі пра­цює 13 то­чок, що роз­та­шо­ва­ні у ша­хо­во­му по­ряд­ку.

Скло­ма­са від­би­ра­єть­ся крізь п’ять фі­де­рів, які ма­ють са­мо­стій­не опа­лен­ня при­ро­д­ним га­зом і ма­ють три ро­бо­чі зо­ни. Те­м­пе­ра­ту­ра по зо­нам за­да­єть­ся в за­ле­ж­но­с­ті від з’є­му скло­ма­си та асо­р­ти­ме­н­ту на фі­де­рі

Па­ра­ме­т­ри пе­чі

За­га­ль­на пло­ща пе­чі, м2                                                                                                  130,7

Пло­ща ва­ри­ль­ної ча­с­ти­ни, м2                                                                                        122

Пло­ща ро­бо­чої ча­с­ти­ни, м2                                                                                          8,7

Гли­би­на ва­ри­ль­но­го ба­сей­ну     , мм                                                                                  900

Гли­би­на ви­ро­б­но­го ба­сей­ну,      мм                                                                                    500

Про­ток; до­в­жи­на /ви­со­та/ши­ри­на, мм                                                                1200/300/600

Рі­вень скло­ма­си в ба­сей­ні, мм                                                                                  80± 1

За­ва­н­та­жу­ва­ль­на ки­ше­ня: ширина/глибина, мм                                                    4000/1250

Кі­ль­кість за­ва­н­та­жу­ва­ль­них ві­кон, шт                                                                         3

Роз­мір ві­к­на: ши­ри­на/висота, мм                                                                                  850/420

Про­ду­к­ти­в­ність пе­чі (в за­ле­ж­но­с­ті від з’є­му скло­ма­си), т/до­бу                                115-160

Тиск у ва­ри­ль­ній та ро­бо­чій ча­с­ти­ні

ней­т­ра­ль­ний або сла­бо по­зи­ти­в­ний,      Па                                                                         1-3;

Га­зо­ва се­ре­да                                                                                                     α=1-1,2

Па­ли­во, ккал/м³                                                                   при­ро­д­ний газ, ка­ло­рій­ність 8000

Тиск га­зу на ГРП це­ху, кгс/см2                                                                                      0,53

Те­м­пе­ра­ту­р­ний ре­жим ва­рін­ня за­без­пе­чу­єть­ся трьо­ма зо­на­ми го­рін­ня

Ха­ра­к­те­ри­с­ти­ка зон

1 зо­на          1 па­ра па­ль­ни­ків                                     ши­ри­на вльо­тів – 1600мм;

2 зо­на          2-3 па­ра па­ль­ни­ків                                 ши­ри­на вльо­тів – 1600мм;

3 зо­на          4-5 па­ра па­ль­ни­ків (від­по­ві­д­но)           ши­ри­на вльо­тів – 1400 та 1200 мм.

Ви­тра­ти га­зу по зо­нам:

1 зо­на                                                                                                                    500 м3/год;

2 зо­на                                                                                                                    600 м3/год;

3 зо­на                                                                                                                    400 м3/год.

Те­п­ло­вий ре­жим

Те­м­пе­ра­ту­ра в по­лу­м’я­но­му про­с­то­рі пе­чі ко­н­т­ро­лю­єть­ся за до­по­мо­гою тер­мо­па­ри ТПР-30/6, та утри­му­єть­ся в на­сту­п­них ме­жах по зо­нам:

За 1 па­рою па­ль­ни­ків                                                                                          1485±50С;

За 3 па­рою па­ль­ни­ків                                                                                          1535±50С;

За 5 па­рою па­ль­ни­ків                                                                                          1510±50С;

В зо­ні ви­ро­б­ки                                                                                                                1200±50С.

Те­м­пе­ра­ту­ра ви­зна­ча­єть­ся за по­ка­зан­ня­ми тер­мо­пар та ко­н­т­ро­лю­єть­ся що­го­ди­ни тер­мо­еле­к­т­ри­ч­ни­ми пе­ре­тво­рю­ва­ча­ми, що вста­новле­ні в скле­пін­ні пе­чі ко­ж­ної зо­ни. Тер­мо­еле­к­т­ри­ч­ні пе­ре­тво­рю­ва­чі опу­ще­ні ни­ж­че скле­пін­ня пе­чі на 50 мм. Ко­н­т­роль на­грі­ву ни­зу та вер­ха на­са­док ре­ге­не­ра­то­рів ви­ко­ну­єть­ся за до­по­мо­гою тер­мо­еле­к­т­ри­ч­них пе­ре­тво­рю­ва­чів, що вста­но­в­ле­ні в ру­ба­ш­ках ре­ге­не­ра­то­рів.

По­ка­зан­ня КІП ар­хі­ву­ють­ся та фі­к­су­ють­ся ко­н­т­ро­ле­ром, а та­кож від­мі­ча­ють­ся в ро­бо­чо­му жу­р­на­лі чер­го­вим скло­ва­ром ко­ж­ні 30 хви­лин. Те­м­пе­ра­ту­ра ди­мо­вих га­зів ви­мі­ря­єть­ся тер­мо­па­рою, що вста­в­ле­на у кла­д­ку під­на­са­до­ч­но­го ка­на­лу. Пе­ре­ве­ден­ня по­лу­м’я ви­ко­ну­єть­ся ав­то­ма­ти­ч­но або ди­с­та­н­цій­но че­рез ко­ж­ні 30 хви­лин.

4.6. Підготовка скломаси до формування[2]

В сучасному виробництві склотари найбільш розповсюдженим э крапельне живлення склоформуючих машин. Формування краплі проходить наступним чином: скломаса з виробної частини печі надходить по каналу в чашу 1 живильника. В дні чаші є отвір, який зачиняється очком 4. Над отвором очка в скломасу занурений циліндричний вогнетривкий плунжер 2. Для утворення краплі з скломаси, що витікає крізь очко плунжеру надають зворотно-поступального руху. Процес утворення краплі за допомогою плунжера починається з моменту, коли її відрізають ножицями 5. Скломаса, що виступає під очком витягується і під дією сил поверхневого натягу округлюється. Коли плунжер рухається вверх він затягує за собою скломасу, в наслідок чого залишок скломаси, що виступає затягується всередину очка. При русі плунжера вниз крізь очко виштовхується гаряча в’язка скломаса. При русі плунжера вверх виникає стоншення (шийка) в струмені скла. Крапля відрізається в місці стоншення. Для перемішування скломаси в чаші в деяких живильниках встановлюють спеціальний вогнетривкий циліндр – бушинг 3, який обертається навколо плунжера.

Існують пневматичні та механічні живильники. В пневматичних живильниках синхронізація роботи та привід плунжера, ножиців і склоформуючої машини відбувається за допомогою стисненого повітря. робота пневматичних живильників непостійна із-за змін тиску в мережі стисненого повітря. В механічних живильниках всі механізми приводяться у рух від електроприводу або від механізму приводу склоформуючої машини.

Рисунок 4.5 – схема утворення краплі на різних стадіях роботи живильника

Крім того механічні живильники розділяються за способом обігріву скломаси на 4 групи:

з рідинним опалюванням;

з газовим опалюванням;

з електричним опаленням;

з комбінованим опаленням.

До роботи живильника ставляться жорсткі вимоги. Він повинен в заданому режимі видавати в форми склоформуючої машини порції скломаси у вигляді крапель, які мають визначенні параметри: температуру(в’язкість), масу(об’єм) і форму. Швидкість утворення крапель залежить від методу і конструкції склоформуючої машини, від товщини виробів, їх форми, складу скла. Частота відрізу крапель повинна бути рівномірною. Необхідно дотримуватися синхронності роботи живильника та склоформуючої машини. Скломаса повинна мати температуру, яка перевищує верхню межу її кристалізації.

В’язкість і межі температур кристалізації скломаси залежать від її хімічного складу. Маса краплі повинна відповідати масі виробу і знаходитися в межах стандарту. На відхилення від цього стандарту, а також на зміну маси і конфігурації краплі, можна впливати шляхом зміни температури. Форма краплі повинна відповідати конфігурації формуючої частини чернової форми видувної склоформуючої машини.

Стабільність об’єму (маси) краплі, що видається живильником, забезпечується постійністю рівню скломаси в печі і в каналі живильника, надійністю настройки механізмів живильника, своєчасним чищенням або заміною очка живильника.

В сучасному виробництві склотари найбільш розповсюдженим э крапельне живлення склоформуючих машин. Існують пневматичні та механічні живильники. В пневматичних живильниках синхронізація роботи та привід плунжера, ножиців і склоформуючої машини відбувається за допомогою стисненого повітря. робота пневматичних живильників непостійна із-за змін тиску в мережі стисненого повітря. В механічних живильниках всі механізми приводяться у рух від електроприводу або від механізму приводу склоформуючої машини.

До роботи живильника ставляться жорсткі вимоги. Він повинен в заданому режимі видавати в форми склоформуючої машини порції скломаси у вигляді крапель, які мають визначенні параметри: температуру(в’язкість), масу(об’єм) і форму. Швидкість утворення крапель залежить від методу і конструкції склоформуючої машини, від товщини виробів, їх форми, складу скла. Частота відрізу крапель повинна бути рівномірною. Необхідно дотримуватися синхронності роботи живильника та склоформуючої машини. Скломаса повинна мати температуру, яка перевищує верхню межу її кристалізації.

В’язкість і межі температур кристалізації скломаси залежать від її хімічного складу. Маса краплі повинна відповідати масі виробу і знаходитися в межах стандарту. На відхилення від цього стандарту, а також на зміну маси і конфігурації краплі, можна впливати шляхом зміни температури. Форма краплі повинна відповідати конфігурації формуючої частини чернової форми видувної склоформуючої машини.

Стабільність об’єму (маси) краплі, що видається живильником, забезпечується постійністю рівню скломаси в печі і в каналі живильника, надійністю настройки механізмів живильника, своєчасним чищенням або заміною очка живильника.

Таб­ли­ця 4.4. – тех­ні­ч­на ха­ра­к­те­ри­с­ти­ка живильника 2ПМГ-521

тип жи­ви­ль­ни­ка

2ПМГ-521

тип жи­в­лен­ня

од­но кра­пе­ль­не двох кра­пе­ль­не

про­ду­к­ти­в­ність, крап/хв

18.7 36.14

тип ма­ши­ни

ВВ-7

ма­са кра­п­лі, г

до 1500 до 450

ді­а­метр отво­ру ві­ч­ка, мм

29-95

хід плу­н­же­ру, мм

30-100

від­стань від рі­в­ня скло­ма­си до рі­в­ню під­ло­ги це­ху, мм

3290

від­стань від бру­су пе­чі до центра ві­ч­ка, мм

5.065

то­в­щи­на слою скло­ма­си в ка­на­лі, мм

155

ши­ри­на ка­на­лу, мм:

в зо­ні охо­ло­джен­ня

660

в зо­ні кон­ди­ці­ю­ван­ня

360-420

при­ро­д­ний газ:

тиск, МПа

0.02-0.05

ви­тра­ти, м3/с

0.0091

сти­с­не­не по­ві­т­ря:

тиск, Па

0.21-0.35

ви­тра­ти, м3/с

0.066

ве­н­ти­ля­то­р­не по­ві­т­ря

тиск, Па

1470

ви­тра­ти, м3/с

0.4444

во­да для охо­ло­джен­ня но­жи­ців та зли­в­но­го ло­т­ку

тиск, Па

0.1

ви­тра­ти, м3/с

0.007

поту­ж­ність дви­гу­на, кВт

2.8

роз­мі­ри живильника, мм:

до­в­жи­на

5600

ши­ри­на

2300

ви­со­та

5605

ма­са, кг

13050

4.7. Формування скловиробів[2],[3],[6]

Формування виробів виконується на роторних склоформуючих машинах ВВ-7.

Машина ВВ-7 має два столи – чорновий та чистовий на яких знаходяться 7 чорнових та 7 чистових формових комплекти. Чорновий стіл розташований над чистовим.

Формування виробів на роторних машинах виконується наступним чином. Перед прийомом чергової краплі скломаси форма змащується за допомогою двох форсунок високого тиску, що розбризкують мастило. В момент подавання краплі в чорнову форму в горловій її частині починає діяти вакуум. Дія вакууму припиняється після оформлення горла виробу. За цей час направляюча вирва відводиться в сторону, і чорнову форму, яка обернулася вверх дном зверху замикає донний затвор. видування пульки виконується знизу вверх, після чого чорнова форма відчиняється, і пулька обертаючись на 1800 разом з горловими кільцями передається на чистовий стіл, де після розкривання горлових кілець виконується вакуумне видування виробу. Перед відчиненням чистової форми дія вакууму припиняється, відставлювач захоплює виріб за горлову частину і встановлює його на охолоджуючий стіл.

                                

Рисунок 4.6 - схема виготовлення пляшок на автоматі ВВ-7

Охолоджуючий стіл призначений для зовнішнього охолодження виробів. На відміну від машини охолоджуючий стіл виконує переривчасті рухи. На столі можливо встановлення пристроїв для внутрішнього охолодження виробів або для оплавлення вінчику виробів.

Форми машини охолоджують вентиляторним повітрям, яке поступаючи у полу центральну колону, направляється по спеціальним каналам до керованих повітряних патрубків обдування форм чорнового та чистового столів. Ці машини можуть бути оснащенні як одномісцевими та і двохмісцевими формами. Продуктивність машини ВВ-7 при однокрапельному живленні становить до 50 пляшок місткістю 500 мл за хвилину та до 80 пляшок за хвилину при використанні двохкрапельного живлення.

4.8. Відпал виробів[5]

Під час формування виробів та їх охолодження між поверхневими та внутрішніми шарами виникає різниця температур, яка пов’язана з низькою теплопровідністю скла. В результаті нерівномірного охолодження внутрішніх за зовнішніх шарів скла в склі виникають напруження стиску та розтягання. швидкість зникнення напруження прямо пропорційна текучості та зворотно пропорційна в’язкості середи.

Після повного охолодження скла, тобто, коли температура по всьому об’єму стане однаковою, напруження, які виникли під час охолодження, або зникають або залишаються. Перше спостерігається, коли процес швидкого охолодження протікає при температурах, що виключають в’язкі деформації. Другий випадок пов’язаний з в’язкими змінами форми скла і дуже розповсюджений при отриманні загартованого або відпаленого скла.

Залишкові внутрішні напруження в склі тим більше, чим більше швидкість охолодження, чим товстіше стінка виробу і чим вище температура, від якої починається охолодження.

Якщо швидко охолоджувати позбавлене напружень скло, починаючи від температур, при яких воно набуває крихкість, тобто, якщо його в’язкість дорівнює1013-1014 Па*с, то незалежно від того, яку швидкість охолодження використано, залишкові напруження в склі вже не виникатимуть.

Від­пал скло­ви­ро­бів про­во­дить­ся в чо­ти­ри ста­дії:                                                                         1) по­пе­ре­дній на­грів або охо­ло­джен­ня ви­ро­бів до ви­щої те­м­пе­ра­ту­ри від­па­лу;                     2) ви­три­м­ка ви­ро­бів при цій те­м­пе­ра­ту­рі;                                                                            3) по­ві­ль­не охо­ло­джен­ня, в ін­тер­ва­лі від­па­лу;                                                                                 4) шви­д­ке охо­ло­джен­ня ви­ро­бів від ни­ж­чої те­м­пе­ра­ту­ри від­па­лу до но­р­ма­ль­ної те­м­пе­ра­ту­ри.

Від­пал про­во­дять в пе­чах від­па­лу по по­пе­ре­дньо роз­ра­хо­ва­но­му ре­жи­му. Від скло­фо­р­му­ва­ль­ної ма­ши­ни до пе­чі від­па­лу ви­ро­би по­да­ють­ся у за­кри­тих з вер­ху та з бо­ків кон­ве­є­рах. Для за­по­бі­ган­ня ви­ни­к­нен­ня за­то­рів на по­во­ро­тах до транс­по­р­те­ру та вхо­ді в піч від­па­лу вста­но­в­лю­єть­ся ди­ск-­ді­ли­ль­ник для фо­р­му­ван­ня щі­лин по­між ви­ро­ба­ми. Пе­ре­ста­в­ник фо­р­мує па­ра­ле­ль­ні ря­ди ви­ро­бів з щі­ли­на­ми про­між ни­ми в ря­ду 5-30 мм. Та­кі са­мі щі­ли­ни під­три­мує кон­ве­єр пе­чі від­па­лу. вхід та ви­хід пе­чі те­п­ло­ізо­льо­ва­ні ”п –по­ді­б­но­ю” што­р­ко­ю. Най­більш зру­ч­ні, про­с­ті та ефе­к­ти­в­ні еле­к­т­ри­ч­ні пе­чі від­па­лу. Во­ни ма­ють на­грі­ва­чі опо­ру, які роз­мі­щу­ють­ся все­ре­ди­ні пе­чі та кон­це­н­т­ру­ють­ся на тих або ін­ших ді­ля­н­ках пе­чі у від­по­ві­д­но­с­ті до кри­вої від­па­лу.

У виробництві склотари найкращішими себе виявили циркуляційні печі. Вони характерні тим, що для вирівнювання температури в них створюють перемінний рух повітря по висоті тунелю.

                           

Рисунок 4.7. – схема дії конвективного теплообміну

Циркуляційним вентилятором 3 гаряче повітря забирається в верхній частині тунелю і поступає по боковим каналам поступає під конвеєрну стрічку 2, при цьому воно обмиває знизу вверх встановлені на ній вироби. Підігрів циркулюючого повітря здійснюється в бокових каналах за допомогою нагрівачів 1. циркуляційні вентилятори забезпечують вирівнювання температури виробів по довжині та по ширині відповідних секцій печі.

Для забезпечення заданої температури по довжині тунелю одночасно з нагрівачами встановлені охолоджуючі пристрої. Для охолодження передбачені вентилятори 4, які подають зовнішнє повітря у канали, які примикають до нижньої та бокових сторін тієї частини тунелю, що опалюється. Ці вентилятори вмикаються тоді, коли температура в тій чи іншій секції перевищує задану. Контроль за температурою виконується за допомогою термопар. Також можливим є автоматичне регулювання заданого режиму відпалу.

Для кожного типу виробів, тобто для виробів маса та товщина стінок яких відрізняються неістотно розраховується окремий режим відпалу.

Таб­ли­ця 4.5 – тех­ні­ч­на ха­ра­к­те­ри­с­ти­ка печі від­па­лу

тип пе­чі

ПЕО 323

про­ду­к­ти­в­ність, кг/год

2500

роз­мі­ри ро­бо­чо­го про­с­то­ру, м

ви­со­та 0.45
ши­ри­на 1.2
до­в­жи­на 16

га­ба­ри­ти пе­чі, м

ви­со­та 2,51
ши­ри­на 3,26
до­в­жи­на 23,67

ши­ри­на транс­по­р­ту­ю­чої сі­т­ки, м

1800

шви­д­кість сі­т­ки, м/хв

0,04-0,8

ви­тра­ти еле­к­т­ро­ене­р­гії,кВт



Поделиться:


Последнее изменение этой страницы: 2020-03-26; просмотров: 323; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.19.31.73 (0.092 с.)