Органические и неорганические ВМС. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Органические и неорганические ВМС.



Оглавление.

1. Введение.

2. Органические и неорганические ВМС.

3. Общие свойства ВМС.

4. Молекулярный вес полимеров.

5. Дробное поведение макромолекул.

6. Геометрическая форма макромолекул.

7. Особенности реакций полимеров.

8. Полиминералогичные превращения.

9. Роль ВМС в природе.

10. Значения ВМС в технике.

11. Использованная литература.

 


Введение.

    Среди многочисленных веществ, встречающихся в природе, резко выделяется группа соединений, отличающихся от других особыми физическими свойствами, высокой вязкостью растворов, способностью образовывать волокна, пленки и т.д. К этим веществам относятся целлюлоза, лигпин, пентозаны, крахмал, белки и нуклеиновые кислоты, широко распространенные в растительном и животном мире, где они образуются в результате жизнедеятельности организмов.

    Высокомолекулярные соединения получили свое название вследствие большой величины их молекулярного веса, отличающие их от низкомолекулярных веществ, молекулярный вес которых лишь сравнительно редко достигает нескольких сотен. В настоящее время принято относить к ВМС вещества с молекулярным весом более 5000.

    Молекулы ВМС называют макромолекулами, а химию ВМС – химией макромолекул и макромолекулярной химией.

    В результате многочисленных соединений, осуществленных огромной армией химиков, физиков и технологов, было установлено не только строение некоторых природных ВМС, но и найдены пути синтеза их заменителей из доступных видов сырья. Возникли новые виды промышленности, началось производство синтетического каучука, искусственных синтетических волокон, пластических масс, лаков и красок, заменителей кожи и т.д. На первых парах синтетические материалы носили характер заменителей природных материалов. В настоящее время в результате успехов в химии и физике ВМС и усовершенствования технологий их производства, благодаря принципиальной возможности сочетать в одном веществе любые желаемые свойства, синтетические ВМС постепенно проникают во все области промышленности, где они становятся совершенно незаменимыми конструкционными и антикоррозийными материалами.

 


Общие свойства ВМС.

Для высокомолекулярных соединений характерны некоторые общие свойства, которые позволяют выделить химию высоко­молекулярных соединений в самостоятельную науку. Эти свойства не могут быть описаны с помощью представлений классической химии. Для рассмотрения свойств высокомолекулярных соединений необходимо ввести принципиально новые понятия, общие для всего класса соединений.

 

Молекулярный вес полимеров.

Первой особенностью химии высокомолекулярных соединений является совершенно новое понятие молекулярного веса.

Для низкомолекулярных соединений величина молекулярного веса — это константа, характеризующая индивидуальность химиче­ского соединения. Изменение молекулярного веса всегда свидетель­ствует о переходе к другому веществу и сопровождается заметным изменением свойств. С переходом от одного представителя гомо­логического ряда к другому (т. е. с изменением величины молеку­лярного веса) физические свойства веществ изменяются настолько, что, пользуясь этим изменением, удается отделить гомологи друг от друга.

Рис. 1. Кривые распределения по молекулярным весам.

Молекулярный Вес

На рис. 1 показаны кривые распределения по молекулярному весу двух полимеров с одинаковой средней степенью полимеризации, но с различной полидисперсностью. Полимер, который характери­зуется кривой 1, более однороден по молекулярному весу, чем поли­мер с кривой распределения 2.

Степень полидисперсности является не менее важной характе­ристикой полимера, чем средний молекулярный вес.

С изменением физических свойств по мере увеличения молекуляр­ного веса непосредственно связана еще одна особенность высокомо­лекулярных соединений. С увеличением молекулярного веса давление паров химических соединений уменьшается и задолго до достиже­ния значений молекулярных весов, характерных для высокомолеку­лярных соединений, падает практически до нуля. При нагревании высокомолекулярных соединений не наблюдается заметной летучести, а при определенной температуре наступает термическое разложение вещества с разрывом химических связей и перегруппировкой атомов. Высокомолекулярные соединения практически нелетучи и не могут быть переведены в газообразное состояние.

В отличие от низкомолекулярных соединений, для которых изве­стны три агрегатных состояния: твердое тело, жидкость, газ, — для высокомолекулярных соединений известны только два агрегатных состояния: твердое тело, жидкость.

 

Роль ВМС в природе.

Живая природа представляет собой форму существования высокомолекулярных соединений. Она развивается в окружении и действии с неорганическим миром, построенным в основном из ВМС. Только вода и воздух распространены на земном шаре так же широко, как ВМС.

Человечество для удовлетворения своих нужд так же создает и использует высокомолекулярные материалы. По своей значимости для человечества с высокомолекулярные материалами конкурируют лишь металлы, как конструкционные материалы, топливо как источник энергии и пищевые продукты. Такое широкое распространение и необычайно высокое значение ВМС вытекает из их общих свойств, обусловленных громадной величиной и сложностью макромолекул.

    Как известно из огромного опыта, накопленного химией, с увеличением молекулярного веса химических соединений подвижность молекул уменьшается. Полезно подчеркнуть, что устойчивость ВМС, особенно органических, является следствием не низкого термодинамического потенциала, а малой подвижности громоздких макромолекул и малой скорости диффузионных процессов. Всякие же физико-химические изменения тел – плавление, растворение, кристаллизация, испарение, деформация – неизбежно связаны с перемещением молекул. Для химических превращений, которые невозможны без непосредственного контакта между молекулами реагирующих веществ, тем более требуется перемещение, диффузионное проникновение одного компонента в массу другого. Естественно, что небольшие молекулы низкомолекулярных соединений, будучи значительно подвижнее макромолекул, гораздо легче подвергаются химическим и физико-химическим превращениям. Долговечность объектов живой и мертвой природы была бы ничтожной, если бы он состояли из низкомолекулярных соединений. Органические высокомолекулярные соединения легче подвергаются изменениям, чем неорганические, а поэтому развитие и эволюция живой природы протекают интенсивней развития и эволюции мертвой. Стабильность неорганических высокомолекулярных тел столь велика, что заметные изменения неживой природы требуют огромных периодов времени, составляющих геологические эры.

    Благодаря большому числу атомов в макромолекуле, высокомолекулярные соединения могут иметь невообразимое число изомеров даже при простейшем элементарном составе. Так, для предельного углеводорода, содержащего 14 углеродных атомов, число только структурных изомеров равно 1558, а для углерода с 20 углеродными атомами оно достигает 366314, хотя эти углеводороды еще не являются ВМС.

    Многообразие ВМС неограниченно. Отсюда вытекает еще большее многообразие явлений природы, особенно жизненных явлений, т.к. подавляющее большинство природных процессов представляют собой процессы образования, изменения и превращения высокомолекулярных тел. Характеризуя значения многообразия органических ВМС, один из создателей макромолекулярной химии – Герман Штаудингер в 1932г. указывал, что для понимания жизненных процессов биологическая химия требует бесконечного числа органических веществ, и, соответственно, бесконечного ряда возможных реакций.

    Устойчивость к физико-химическим превращениям и многообразие ВМС являются теми фундаментальными принципами, которые определяют их роль и распространение в природе.

В условиях земного шара непрерывно протекают разнообразные взаимные превращения низко- и высокомолекулярных соединений. Чередование процессов образования и распада ВМС является чрезвычайно важной специфической особенностью конкретного выражения химического движения материи в температурных условиях земного шара. При более высоких температурах должны преобладать взаимные превращения атомов и простейших молекул или процессы в которых наиболее сложные частицы будут свободные атомы.

Низкомолекулярные соединения благодаря своей подвижности легко перемещаются в пространстве, быстро вступают в соприкосно­вение и взаимодействие друг с другом или с высокомолекулярными соединениями, образуя, видоизменяя или расщепляя последние. Они являются, таким образом, переносчиками макромолекул в природе. Сложность и малая подвижность макромолекул обусловливают дли­тельное существование высокомолекулярных тел и их многообразие.

Конкретные пути образования, изменения и распада высокомо­лекулярных соединений очень сложны и специфичны. Вместе с тем в природе наблюдается поразительная воспроизводимость процес­сов образования и превращения сложнейших высокомолекулярных соединений, например белков.

Ответственная роль в биохимическом синтезе белков принадле­жит нуклеиновым кислотам, которые определяют его специфичность. В самой структуре нуклеиновых кислот заключены основы точного их воспроизведения и направленного синтеза белковых молекул, а также передачи наследственных признаков организма. В то же время белок-фермент способствует синтезу нуклеиновых кислот, полисахаридов и других высокомолекулярных соединений. Сложный комплекс веществ — белков, нуклеиновых кислот, углеводов и регуляторов их химических превращений — ферментов, гормонов, витами­нов — составляет основу жизненного цикла организма.


Оглавление.

1. Введение.

2. Органические и неорганические ВМС.

3. Общие свойства ВМС.

4. Молекулярный вес полимеров.

5. Дробное поведение макромолекул.

6. Геометрическая форма макромолекул.

7. Особенности реакций полимеров.

8. Полиминералогичные превращения.

9. Роль ВМС в природе.

10. Значения ВМС в технике.

11. Использованная литература.

 


Введение.

    Среди многочисленных веществ, встречающихся в природе, резко выделяется группа соединений, отличающихся от других особыми физическими свойствами, высокой вязкостью растворов, способностью образовывать волокна, пленки и т.д. К этим веществам относятся целлюлоза, лигпин, пентозаны, крахмал, белки и нуклеиновые кислоты, широко распространенные в растительном и животном мире, где они образуются в результате жизнедеятельности организмов.

    Высокомолекулярные соединения получили свое название вследствие большой величины их молекулярного веса, отличающие их от низкомолекулярных веществ, молекулярный вес которых лишь сравнительно редко достигает нескольких сотен. В настоящее время принято относить к ВМС вещества с молекулярным весом более 5000.

    Молекулы ВМС называют макромолекулами, а химию ВМС – химией макромолекул и макромолекулярной химией.

    В результате многочисленных соединений, осуществленных огромной армией химиков, физиков и технологов, было установлено не только строение некоторых природных ВМС, но и найдены пути синтеза их заменителей из доступных видов сырья. Возникли новые виды промышленности, началось производство синтетического каучука, искусственных синтетических волокон, пластических масс, лаков и красок, заменителей кожи и т.д. На первых парах синтетические материалы носили характер заменителей природных материалов. В настоящее время в результате успехов в химии и физике ВМС и усовершенствования технологий их производства, благодаря принципиальной возможности сочетать в одном веществе любые желаемые свойства, синтетические ВМС постепенно проникают во все области промышленности, где они становятся совершенно незаменимыми конструкционными и антикоррозийными материалами.

 


Органические и неорганические ВМС.

Органические ВМС являются основой живой природы входящие в состав растений, - полисахариды, лигпин, белки, пектиновые вещества – высокомолекулярны. Ценные механические свойства древесины, хлопка, льны обусловлены значительным содержанием в них высокомолекулярного полисахарида – целлюлозы. Главной составной частью картофеля, пшеницы, ржи, овса, риса, кукурузы, ячменя являются другой высокомолекулярный полисахарид – крахмал. Торф, бурый уголь, каменные угли представляют собой продукты геологического превращения растительных тканей, главным образом целлюлозы и лигнина, а также должны быть отнесены к высокомолекулярным соединениям.

В основе живого мира также лежат ВМС – белки, являющиеся главной составной частью почти всех веществ животного происхождения. Мышцы, соединительные ткани, мозг, кровь, кожа, волосы, шерсть, рог состоят в основном из высокомолекулярных белковых веществ.

Неорганические высокомолекулярные соединения играют такую же большую роль и так же распространены в минеральном мире, как органические ВМП в живой природе.

Основная часть земной коры состоит из окислов кремния, алюминия и других многовалентных элементов, соединенных, по-видимому, в макромолекулы. Наиболее распространен среди этих окислов кремниевый ангидрид [SiO2]n, являющийся, бесспорно, высокомолекулярным соединением. Более 50% всей массы земного шара состоит из кремниевого ангидрида, а в наружной части земной коры содержание его достигает 60%. Наиболее распространенной модификацией кремниевого ангидрида является кварц – важнейшая составная часть большинства горных пород и песка.


Общие свойства ВМС.

Для высокомолекулярных соединений характерны некоторые общие свойства, которые позволяют выделить химию высоко­молекулярных соединений в самостоятельную науку. Эти свойства не могут быть описаны с помощью представлений классической химии. Для рассмотрения свойств высокомолекулярных соединений необходимо ввести принципиально новые понятия, общие для всего класса соединений.

 

Молекулярный вес полимеров.

Первой особенностью химии высокомолекулярных соединений является совершенно новое понятие молекулярного веса.

Для низкомолекулярных соединений величина молекулярного веса — это константа, характеризующая индивидуальность химиче­ского соединения. Изменение молекулярного веса всегда свидетель­ствует о переходе к другому веществу и сопровождается заметным изменением свойств. С переходом от одного представителя гомо­логического ряда к другому (т. е. с изменением величины молеку­лярного веса) физические свойства веществ изменяются настолько, что, пользуясь этим изменением, удается отделить гомологи друг от друга.

Рис. 1. Кривые распределения по молекулярным весам.

Молекулярный Вес

На рис. 1 показаны кривые распределения по молекулярному весу двух полимеров с одинаковой средней степенью полимеризации, но с различной полидисперсностью. Полимер, который характери­зуется кривой 1, более однороден по молекулярному весу, чем поли­мер с кривой распределения 2.

Степень полидисперсности является не менее важной характе­ристикой полимера, чем средний молекулярный вес.

С изменением физических свойств по мере увеличения молекуляр­ного веса непосредственно связана еще одна особенность высокомо­лекулярных соединений. С увеличением молекулярного веса давление паров химических соединений уменьшается и задолго до достиже­ния значений молекулярных весов, характерных для высокомолеку­лярных соединений, падает практически до нуля. При нагревании высокомолекулярных соединений не наблюдается заметной летучести, а при определенной температуре наступает термическое разложение вещества с разрывом химических связей и перегруппировкой атомов. Высокомолекулярные соединения практически нелетучи и не могут быть переведены в газообразное состояние.

В отличие от низкомолекулярных соединений, для которых изве­стны три агрегатных состояния: твердое тело, жидкость, газ, — для высокомолекулярных соединений известны только два агрегатных состояния: твердое тело, жидкость.

 



Поделиться:


Последнее изменение этой страницы: 2020-03-26; просмотров: 194; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.58.24 (0.035 с.)