Хроника первых миллионов лет 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Хроника первых миллионов лет



Чтобы получить ответ на этот вопрос, были проведены исследования начальной стадии эволюции Вселенной, наступившей непосредственно за «большим взрывом». Невозможно начать рассказ о «сотворении мира» непосредственно с момента «нуль», т.е. начиная с сакраментального изречения «Да будет свет!». Этот момент есть всего лишь математический образ, присутствующий в уравнениях Эйнштейна; никто не может гарантировать, что законы физики остаются справедливыми для такого состояния вещества, при котором весь космос оказывается сжатым до размеров спичечной головки. Нам придется удовлетвориться тем, что отправной точкой мы будем считать десятитысячную долю секунды после самого начала. Из проделанных вычислений следует, что радиус кривизны Вселенной в этот момент равнялся примерно одной тридцатой части светового года, т.е. 300 млрд. км, что в тысячу раз превышает размеры Солнечной системы. Хотя это и колоссальная величина, но она ничтожна по сравнению с размерами современной Вселенной. Таким образом, вещество находилось в крайне сжатом состоянии с плотностью в тысячи миллиардов раз больше, чем плотность воды, и при чрезвычайно высокой температуре порядка одного триллиона градусов. Происходящее в космосе можно было бы сравнить, например, с быстрым расширением воздуха, нагретого при сжатии его в велосипедном насосе. Чем же был заполнен космос в эти мгновения?

Напомним, что температура газа представляет собой не что иное, как меру средней энергии составляющих его частиц. Если эти частицы попытаться нагреть, до триллиона градусов, то они будут сталкиваться друг с другом с такой силой, что атомы разобьются на ядра и электроны; в свою очередь ядра разобьются на нейтроны и протоны, из которых они состоят. Более того, энергия разлетающихся частей будет столь высока, что сможет материализоваться согласно формуле E = mc 2 и привести к появлению вещества – антивещества (пар мюонов и электрон-позитронных пар).

Космические соударения сначала происходят в неистовом ритме, который со временем затихает; в конце концов столкновения становятся совсем редкими. Расширяясь, Вселенная охлаждается со скоростью, обратно пропорциональной ее радиусу. В свою очередь радиус Вселенной увеличивается как корень квадратный из прошедшего времени; так, например, при увеличении времени от одной до четырех секунд радиус Вселенной увеличится в два раза, в то время как температура уменьшится вдвое. По прошествии одной секунды после начала пропадают мюоны и начинается образование более стабильных ядер (главным образом ядер гелия, или α-частиц, состоящих из двух протонов и двух нейтронов). В течение последующих трех минут нуклеосинтез по существу заканчивается.

Спустя четверть часа после начала (т.е. примерно через 1000 секунд) радиус Вселенной достигает 100 световых лет, а температура равна «всего лишь» 300 млн. градусов, что сравнимо с температурой, наблюдаемой при термоядерных взрывах. С этого момента наблюдается более медленное охлаждение Вселенной наряду с ее расширением, и пройдет еще миллион лет, прежде чем произойдет новый качественный скачок в картине развития Вселенной. Температура при этом упадет уже до четырех тысяч градусов, и свободные электроны начнут рекомбинировать с ядрами, образуя атомы, которые, наконец, будут способны противостоять уменьшившемуся уровню тепла.

Реликтовое излучение

Что бы мы увидели, если бы могли окинуть взглядом пространство в ту далекую первоначальную эпоху?

Яркость равномерного свечения неба всего в десять раз меньше, чем у поверхности Солнца (что очень близко к яркости свечения солнечных пятен, в свою очередь сравнимой с яркостью дуговой лампы). Жара, как в аду, поддерживает вещество в возбужденном состоянии, не давая ему конденсироваться. После образования атомов вещество становится прозрачным для света, и свет блуждает в течение миллиардов лет по всей Вселенной вплоть до наших дней. Почему же мы его не видим? Ответ состоит в том, что его все-таки удалось увидеть, хотя и не в виде «света» в обычном смысле. Расширение Вселенной приводит к смещению цветов спектра в сторону красного (при удалении источника увеличивается длина волны света). Эффект становится очень заметным, если он накапливается в течение всей предшествующей жизни космоса; излучение становится микроволновым, невидимым для глаза; его, однако, можно зарегистрировать с помощью радиотелескопов, что и сделали Пензиас и Уилсон в 1965 г. (в лабораториях фирмы «Белл»). Результаты этих исключительно важных наблюдений дают наиболее веское подтверждение гипотезы «большого взрыва». Реликтовое излучение (именно так его называют) представляет собой самое древнее из имеющихся свидетельств нашей эволюции; оно было испущено, когда прошло меньше одной тысячной доли всей жизни Вселенной. В те времена динозавры еще маячили как призраки далекого будущего, египетские пирамиды могли бы восприниматься как начало сегодняшнего дня, и все это представляло незначительные события в жизни незначительной планеты, принадлежащей второстепенной галактике.

Роль дейтерия

Существуют ли причины, кроме простого любопытства, по которым следует определять различные численные характеристики «сверхварева» вещества, появившегося вслед за «большим взрывом»? Да, и вот одна из них.

Из вычислений следует, что оставшийся «пепел» должен был состоять примерно на три четверти из водорода; остальная часть – это гелий и очень малые примеси более тяжелых элементов. Не случайно, что такой же начальный состав галактического вещества получается и из данных о эволюции звезд. Кроме того, в этом месиве должен был присутствовать тяжелый изотоп водорода – дейтерий, относительно легкий по сравнению с другими ядрами. По всей видимости, дейтерий не может создаваться в горниле звездных печей, где он бы сразу превращался в гелий или так или иначе разрушался. Поэтому встречающийся в настоящее время дейтерий (даже в стенах домов) должен был сохраниться еще со времени «большого взрыва». Если Вселенная действительно была тогда очень плотной (настолько, чтобы быть замкнутой), то, как показывают расчеты, частые столкновения дейтонов (ядер дейтерия) с другими ядрами чрезвычайно быстро привели бы к их разрушению.

Таким образом, обнаружение значительного количества дейтерия в нынешней Вселенной указывало бы на малую плотность вещества в ней, т.е. на то, что Вселенная открыта. Наблюдения нашей Галактики, судя по всему, подтверждают существование межзвездных облаков, состоящих из дейтерия, что говорит в пользу модели открытой Вселенной, по крайней мере временно, поскольку не исключена возможность того, что будет обнаружен остроумный способ образования дейтерия в звездах, противоречащий нашим рассуждениям.

Образование галактик

Каковы же размеры современной Вселенной и когда появились галактики?

Образование галактик началось только спустя миллиард лет после «большого взрыва». К этому моменту вещество уже успело охладиться до идиллических температур (всего в сотню градусов) и стали появляться стабильные флуктуации плотности среди облаков газа, равномерно заполнявших космос. Локальное увеличение плотности вещества оказывается стабильным, если плотность достаточно велика, так как в этом случае создается локальное гравитационное поле, способствующее сохранению вещества в сжатом состоянии.

Продолжая сжиматься и теряя при этом энергию на излучение, уплотнившееся вещество в результате своей эволюции превращалось в современные галактики. Хотя в общих чертах нам ясно, что тогда происходило, но механизм образования галактик все же понят не до конца и противоречит аккуратным подсчетам наблюдаемых масс галактик и их скоплений. Так что работы осталось много. Проникая с помощью телескопов все дальше в глубь космоса, мы обнаруживаем, что самые далекие объекты перемещаются со скоростями, вплотную приближающимися к скорости света, и поэтому они перестают быть видимыми. Где-то вдалеке существует горизонт, и свет от объектов, находящихся за ним, до нас еще не дошел; находится этот горизонт на расстоянии примерно 12 млрд. световых лет. Насколько можно судить, космос заполнен множеством галактик (десятками миллиардов), объединенных в гигантские скопления, содержащие сотни и тысячи галактик.



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 61; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.68.14 (0.005 с.)