Перечень условных сокращений, обозначений, применяемых в проекте. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Перечень условных сокращений, обозначений, применяемых в проекте.



Перечень условных сокращений, обозначений, применяемых в проекте.

 

АК - азотная кислота

СК - серная кислота

НКЛ – нитрокаллоксилин

ОК - отработанная кислота

ВКУ – вихревое контактное устройство

АСУТП – автоматизированные системы управления технологическим процессом

УВМ – управляющая вычислительная машина


ВВЕДЕНИЕ [1]

В настоящее время развитие производств, применяющих смесь азотной и серных кислот в качестве нитрующего агента, привело к получению огромных количеств отработанных кислотных смесей. Эти смеси с экономической точки зрения необходимо регенерировать и в необходимых расчетных концентрациях возвращать обратно в производственный цикл, тем самым удешевляя единицу себестоимости готовой продукции.

Состав тройных смесей HNO3 –H2SO4 – H2O, поступающих на регенерацию, колеблется в довольно широких пределах. В одних случаях они представляют сильно разбавленные кислотные смеси с содержанием азотной кислоты 5-10%, в других случаях отработанные кислоты содержат 1-2% азотной кислоты и 65-70% серной кислоты, в которой растворены окислы азота N2O3, образующие нитрозилсерную кислоту HNSO5.

Регенерация таких смесей представляет собой определенные трудности и требует изыскания все новых и новых способов, обеспечивающие нормальное ведение процесса разгонки отработанных кислот, а также получение азотной и серной кислот, которые по своим качествам и техническим характеристикам не уступают свежим кислотам применяемым для нитрации.

Начальной ступенью регенерации отработанных кислот является их денитрация. Этот процесс заключается в выделении их кислотной смеси азотной кислоты и окислов азота, содержащихся в смеси. В результате проведения процесса денитрации получается 68-70% серная кислота, которая поступает на концентрирование, после чего, в случае необходимости, может быть снова направлена непосредственно в цикл нитрации.


Аналитическая часть

1.1. Технико-экономическое обоснование выбранного метода производства [2], [3]

 

В современной технологии для концентрирования серной кислоты применяются два вида установок:

- с внешним обогревом;

- с непосредственным соприкосновением греющих газов с кислотой.

К установкам внешнего обогрева относятся котлы, так называемые реторты, установки типа Бюшинга, Паулинга, Фришера, а также Майснера. В них происходит обогрев кислоты через стенку в аппаратах колонного типа, установки вакуум-аппаратов и установки Дюпон пленочного типа.

К установкам с непосредственным соприкосновением горячих газов с кислотой относятся установки Кесслера; широкое распространение получили аппараты типа Хемико, работающие в режиме барботирования газов через слой серной кислоты и аппараты Вентури трубного типа.

Суть процесса концентрирования в аппаратах этого типа заключается в дроблении кислоты на капли благодаря потоку горячего газа.

Оба вида технологий получения концентрированной серной кислоты имеют как положительные, так и отрицательные стороны, которые необходимо учитывать при выборе характера производства в каждом отдельном проекте с учетом экономических показателей и наличия трудовых и сырьевых ресурсов.

Большим преимуществом установок с внешним обогревом является отсутствие или минимальное количество тумана серной кислоты, образующейся в результате работы концентраторов второго типа, а также получения серной кислоты с крепостью до 98%. Благодаря исключению необходимости очистки выхлопных газов от кислотного тумана, появляется возможность удешевить технологический процесс в результате выхода из технологической схемы дорогостоящих электрофильтров. Но при концентрировании серной кислоты, например, в ретортах до 96% крепости и выше, происходит их быстрое изнашивание из-за высокой температуры кипения серной кислоты, которая достигает t=300оC. Кроме того, при высоких температурах увеличивается испарение и разложение серной кислоты, что ведет к потере количества и качества серной кислоты. Эти недостатки учтены и устранены в установках типа Майснера, где концентрирование происходит под вакуумом. Установки Майснера весьма компактны по сравнению с ретортными установками Паулинга. При проектировании производств одной и той же мощности, установки с колоннами Майснера занимают менее 40% площади, требующейся для установки реторт Паулинга. Однако установки Майснера имеют весьма серьезный недостаток ввиду малой производительности (выход готового продукта составляет до 13-15 т/сут.). К другому недостатку относится растрескивание ферросилидовых царг, проявляющееся в процессе эксплуатации данной установки, а также нарушение уплотнения между царгами. К недостаткам колонн Майснера относится также необходимость строительства котельных для выработки водяного пара, применяемого в колоннах. Следовательно, этот тип установок может быть применен только в случаях необходимости концентрирования небольших количеств серной кислоты и для получения при этом серной кислоты высокой концентрации (до 98%).

Проблема растрескивания ферросилидовых материалов и проблема появления неплотностей были решены с появлением установок с применением нагревательных труб и метода стекающей пленки в установках типа Дюпон. В этих установках применено новое техническое решение в виде монтажа оборудования с учетом механических и термических напряжений ферросилида, то есть либо на катках, либо на пружинных подвесках. К преимуществам относится простота устройства, исполнения и обслуживания. Эти установки по производительности относятся к числу средних, достигая до 25 т/сутки. К недостаткам этого вида установок относится загрязнение внутренних поверхностей труб с течением времени, что приводит к снижению их теплопропускной способности и необходимости их периодической прочистки и промывки с применением большого количества воды. В нашей стране в начальный период развития производства получения высококонцентрированной серной кислоты установки этого типа пользовались большой популярностью, но, в связи с бурным ростом промышленности, потребляющей СК в огромных количествах, установки первого типа были в основном вытеснены установками второго типа – с непосредственным соприкосновением греющих газов с кислотой, а установки с внешним обогревом функционируют и в настоящее время в единичных экземплярах.

Один из представителей установок второго типа установки Кесслера, в которых значительно облегчена передача тепла от топочных газов к серной кислоте. Концентрируемая кислота не доводится до точки кипения, а большая, открытая поверхность контакта газа и кислоты максимизирует интенсивность процесса массопередачи и теплопередачи. Кроме того, преимуществом установок Кесслера является их возможность работать на любом местном виде топлива: газообразном, жидком, твердом, что значительно увеличивает сырьевые возможности безостановочного перехода с одного вида топлива в случае необходимости на другой. К недостаткам в первую очередь относится необходимость периодической чистки рекуператора с выгрузкой насадки, а также большая потеря СК с отходными газами, что составляет порядка 2-2,5%. Данные аппараты имеют небольшую производительность – 20 т/сутки. В последнее время установки Кесслера в своем большинстве были вытеснены концентраторами барабанного типа. В аппаратах этого типа концентрирование производится путем барботажа горячих газов через упариваемую кислоту, как в слое кислоты, так и в зоне брызг, где на поверхности капель происходит хорошая теплопередача. До настоящего времени они считались наиболее удобными, экономичными и практичными для концентрирования серной кислоты. Основной вид топлива для этих установок – мазут. Однако в последнее время в связи с ростом производства природного газа, последний стал широко применяться в концентраторах барабанного типа.

К преимуществам этих концентраторов относятся лучшее использование тепла и переработка большого количества кислоты. Данные концентраторы имеют и ряд существенных недостатков, которые не могут быть устранены без коренных изменений конструкции. Первый недостаток заключается в поддержании строгого температурного режима топочных газов, так как увеличение его даже на 10 ОС довольно быстро разрушает барботажные трубы первой камеры концентратора и, следовательно, увеличиваются потери СК из-за ее термического разложения, которые составляют 10-15% от общего количества СК, идущей на концентрирование.

Вторым, весьма существенным недостатком, является образование паров и туманов СК, улов которых требует применение громоздких и дорогостоящих сооружений – электрофильтров, причем сами электрофильтры тоже имеют недостатки – они осуществляют неполный улов сернистых газов и окислов азота, которые выбрасываются в атмосферу; стоимость же их весьма велика и составляет до 30% затрат на всю установку. Учитывая все изложенные преимущества и недостатки, появились новые скоростные концентраторы, в которых потоком горячего газа жидкость преимущественно разбивается на мельчайшие капли. Для создания такого процесса концентрирования СК в капельном состоянии используют аппараты Вентури.

Таблица №1 - Расходные коэффициенты на получение 92,5% серной кислоты

 

Показатели Барботажный концентратор Трубы Вентури
Топливо, кг 70 44,5
Вода (t=25 ОС) 7 6,5
Эл. энергия, кВт/ч 18 16,6

 

Применение этих труб имеет ряд преимуществ: при небольших размерах они имеют большую производительность, что позволяет снизить капитальные затраты на 1 тонну концентрированной кислоты по сравнению с барботажным концентратором. Преимуществом этого метода является то, что более низкая температура кипения кислоты уменьшает степень разложения при ее концентрировании и уменьшает туманообразование, что в конечном итоге приводит к уменьшению требуемого объема газоочистки.

Вихревая ферросилидовая колонна коренным образом отличается от ныне действующих в промышленности систем концентрирования СК. Процесс осуществляется в режиме без образования туманов серной кислоты и сернистого ангидрида, что резко снижает газовые выбросы. Конструктивное исполнение концентратора позволяет за счет дополнительных брызгоуловительных и абсорбционных ступеней осуществлять снижение газового выброса до санитарных норм без электрофильтров и скрубберов.

Патентная часть

Для проведения патентных исследований определяется предмет поиска по теме дипломного проекта, подлежащей исследованию.

Предмет поиска: "Регенерация отработанных кислот."

Поиск проводится по отечественному патентному фонду, исходя из наличия фонда в библиотеке КГТУ. Глубина поиска – 5 лет, начиная с 1994 года и вглубь без пробелов.

Источник информации об отечественных изобретениях по Международной классификации изобретения МПК:

С01В17/88, С01В17/90, С01В21/24, С01В21/22, С01В21/38, С01В21/40, С01В21/44.

Целью исследований является установление уровня развития техники в данной области и анализ применимости прогрессивности решений в дипломном проекте.

Для составления полного списка изобретений, имеющих отношение к теме поиска, пользуются годовыми систематическими указателями к официальным бюллетеням.

Номера охранных документов, имеющих отношение к теме поиска, заносятся в таблицу.

Таблица №2 – Список охранных документов

Индекс МПК №№ охранных документов №№ БИ или ИЗР Страна выдачи патента Название изобретения
    1994 год    
С01В17/88 2016842 14 РФ Способ концентрирования H2SO4
С01В21/24 2022917 21 РФ Способ получения окиси азота
С01В21/26 1102183 6 РФ Способ окисления аммиака
С01В21/38 2009996 6 РФ Способ получения азотной кислоты
    1993 год    
С01В17/22 1805095 12   Способ регенерации отработанной H2SO4
С01В21/38 1809774 14   Способ снижения содержания оксидов азота в хвостовых газах производства слабой азотной кислоты
    1992 год    
С01В21/22 1675202 33 РФ Способ получения закиси азота
С01В21/26 1636332 11 РФ Способ очистки газообразного монооксида азота
  1698187 46 РФ Способ получения могооксида азота
С01В21/24 1650575 19 РФ Способ двухступенчатого окисления аммиака
С01В21/38 1664740 27 РФ Способ автоматического управления процессом очистки хвостовых газов от оксида азота
С01В21/40 1668291 29 РФ Способ переработки окислов азота в неконцентрированную азотную кислоту
    1991 год    
С01В21/90 1712304 6 СССР Способ очистки серной кислоты
С01В17/88 1723030 12 СССР Способ концентрирования и очистки серной кислоты
    1990 год    
С01В21/40 15641114 18 СССР Способ ректификации смеси "азотная кислота -четырехокись азота"
  1593691 35 СССР Способ очистки газовой смеси от оксидов азота
С01В21/46 1586997 31 СССР Способ регенерации отработанной 20-50% азотной кислоты

 

В разрабатываемый план наиболее подходят следующие изобретений:

(11) 2016842      (13) С1

(51) 5С01В17/88

(21) 4945951/26

(72) Махоткин А.Ф., Халитов Р.А., Иванов Г.А., Газизов Ф.М., Куликов В.В., Зарипов И.Р., Лаптев В.И.

(71) Казанский Государственный Технологический Университет

(54)(57)

1. Способ концентрирования серной кислоты, включающий многоступенчатое прямое контактирование исходной кислоты с потоком горячих топочных газов в режиме противотока и последующее сепарирование, отличающееся тем, что с целью предотвращения образования сернокислого тумана в отходящих газах, газожидкостную смесь на каждой ступени подвергают разделению на жидкостной и дисперсный потоки с подачей последнего на следующую ступень, а жидкостного – на предыдущую по отношению к направлению потока газов ступень, причем концентрацию серной кислоты в дисперсном потоке поддерживают равной 0,6-1,4 кг/м3.

2. Способ по п.1, отличающийся тем, что процесс ведут в 3-4 ступени.

(11) 1541188      (51) С01В17/90

(21) 3741076/23-26      (22) 11.05..84

(71) Горьковский Политехнический институт

(72) Пастухова Г.В., Ким П.П., Петрушков А.А., Катраев А.Н., Казанцев П.П., Никандров И.С., Овчинников В.Д.

(53) 661.254

(54)(57) Способ очистки концентрированной серной кислоты от оксидов азота обработкой восстановителем при повышенной температуре, отличающийся тем, что с целью снижения расхода восстановителя и получения утилизируемого отхода оксида азота, в качестве восстановителя используют уротропин в стехиометрическом количестве для восстановления азотистого ангидрида до оксида азота.

(11) 1699901      (51) С01В17/88

G05Д27/00

(21) 66.012.-52

(75) Кабатов Г.С., Алексеев Ю.В., Сапожников А.Д.; (54)(57) Способ управления процессом концентрирования серной кислоты в массобоменном колонном аппарате путем измерения температуры на последней по ходу кислоты ступени массообменной колонны, регулирования расхода топлива в печь по температуре топочных газов, стабилизации расходов разбавленной серной кислоты, воздуха в печь, температур топочных газов и концентрированной серной кислоты, отличающейся тем, что с целью повышения качества продукта и снижения выбросов вредных веществ в атмосферу, температуру топочных газов, подаваемых в печь, корректируют по температуре на последней по ходу кислоты ступени массообменной колонны.

(11) 1809774      (51) В01Д53/14, С01В21/38, С01В21/40

(22) 4913954/26 (22) 25.02.91

(72) В.А. Линев, В.И. Герасименко, А.А. Черкасов, М.П. Решетюк, Г.С. Николаев.

(71) Производственное объединение "Куйбышевазот"

(73) Производственное объединение "Куйбышевазот"

(54)(57) Способ снижения содержания оксидов азота в хвостовых газах производства слабой азотной кислоты, включающий абсорбцию нитрозных газов водным раствором азотной кислоты с последующм восстановлением вводимых со стадии абсорбции хвостовых газов, содержащих примеси оксидов азота, аммиаком, отличающийся тем, что с целью снижения содержания вредных веществ в хвостовых газах и расхода аммиака, водный раствор азотной кислоты, перед абсорбцией обрабатывают озонокислородной смесью, содержащей 40-60 г. озона на 1 м3 хвостового газа, вводимого со стадии абсорбции.

(11) 1688291      (51)5 С01В21/40

(21) 4648035/28 (22) 07.02.89

(53) 661.56

(72) А.Ф. Мараховский, Е.Н. Золотарев, В.К. Киселев, В.А. Степанов, Н.П. Перепадья, В.В. Истомин.

(71) Харьковский Институт инженеров коммунального строительства, Горловское производственное объединение "Стирол", кооператив "Спутник".

(54)(57) Способ переработки оксидов азота в неконцентрированной азотной кислоте включающий их абсорбцию поглотителем, содержащим азотную кислоту, предварительно обработанную магнитным полем напряженностью 1500-2500 Э, отличающийся тем, что с целью увеличения степени переработки, одновременно с магнитной обработкой осуществляется аэрирование поглотителя воздухом или газовой смесью, содержащей 90-99% кислорода в течении 20-40 мин. При удельном расходе воздуха или газовой смеси 0,2-2,0 м3, на 1м поглотителя в час.

Заключение

Патентные исследования по фонду изобретений показали, что тема разрабатывалась, однако внимание разработчиков к исследуемой теме неравномерно по годам. Пик изобретательской активности приходится на 1992 год. При разработке темы основное внимание уделялось повышению качества готового продукта, снижению материальных затрат, улучшению технологии процесса. Разработки касаются не только совершенствования всей технологической схемы, но и отдельных операций производственного цикла и оборудования для него, изменение методов управления процессом на отдельных стадиях.

Для анализа обработано 5 изобретений, имеющих непосредственное отношение к исследуемой теме. В них разработаны методы регенерации и утилизации отработанной кислоты, при этом решаются задачи экологии за счет замкнутости цикла.

Таблица №5 - Состав тройных смесей

Наименование составных частей Отработанной кислоты Вытесненной кислоты
1. Азотная кислота, в % 15-22 15-22
2. Серная кислота, в % 35-40 35-40
3. Окислы азота, в % 4-5 0,5-1,0
4. Вода, в % 33-46 37-49,5

 

4. Слабая серная кислота

Таблица №6 Состав слабой H2SO4 должен удовлетворять условиям ГОСТа 1500-78

Наименование составных частей Нормы
     
1. Содержание серной кислоты, в % 67-70
     
2. Содержание азотной кислоты, в % 0,03
     

 

Топливо (природный газ)

Природный газ должен соответствовать требованиям по ГОСТ 5542-70

Таблица №7 Технические условия на природный газ

Наименование показателей на 100 гр. Газа Нормы
1. 2. 3.
1. Содержание сероводорода в гр., не более 2
2. Содержание аммиака в гр., не более 2
3. Содержание синильной кислоты в гр., не более 5
4. Содержание смол и пыли в гр., не более 0,1
5. Содержание нафталина в гр., не более 10
6. Содержание кислорода в гр., не более 1

 

Природный газ используется для получения тепла при концентрировании кислот.

Серная кислота концентрированная должна быть изготовлена в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке. По физико-техническим показателям СК должна соответствовать нормам, указанным в таблице 8 по ГОСТ 2184-77.

 

Таблица №8

Наименование показателей

норма

 

 

Контактная

Олеум высший

высший сорт I сорт

высший сорт

I сорт
1 Внешний вид

Не нормируется

Маслянистая жидкость без механических примесей

2 Массовая доля моногидрата (H2SO4), в % 92,5 94

92,5

94
3 Массовая доля свободного серного ангидрида (SO3) в %, не менее - -

24

24
4 Массовая доля железа, не более 0,006 0,015

0,006

0,01
5 Массовая доля остатка после прокаливания, %, не более 0,02 0,03

0,02

0,03
6 Массовая доля нитросоединений, %, не более

Не нормируется

Не нормируется

7 Массовая доля окислов азота (N2O3), %, не более 0,00005 0,0001

0,0002

0,0005

8 Массовая доля мышьяка (As), %,не более 0,00008 0,00001

0,00008

0,00001

9 Массовая доля хлористых соединений, в %,не более 0,0001 0,0005

Не нормируется

10 Массовая доля свинца (Pb), %,не более 0,001 0,01

0,0001

0,001
11 Прозрачность

Не нормируется

Разбавление

12 Цвет в мл. раствора, сравнение 1 2

Не нормируется

               

 

Инженерные решения

В данный дипломный проект вводится ряд изменений, направленных на улучшение технологии переработки кислот и очистки отходящих газов.

1. На фазе улова окислов азота и паров азотной кислоты предусматривается внедрение дополнительной абсорбции отходящих газов концентрированной H2SO4. серная кислота реагирует с окислами азота, образуя нитрозилсерную кислоту, которая затем снова направляется в колонну ГБХ для переработки. Отходящие газы с небольшим содержанием окислов азота, выбрасываются в атмосферу.

2. Процесс регенерации отработанной кислоты переведен на автоматизированное управление с применением УВМ, что значительно снижает опасность технологического процесса и повышает качество продукции. Подача кислот в колонну ГБХ автоматизирована. Предусмотрено автоматическое отключение подачи компонентов в случае аварии.

2.6. Расчет материального баланса отделения концентрирования HNO3 [1]

Отделение денитрации и концентрирования азотной кислоты.

Состав отработанных кислот, поступающих на денитрацию:

а) от нитрации                                          HNO3     16-26%

                                                                    H2SO4     46-66%

                                                                    H2O 18-28%

б) от абсорбционной установки

                                                                    HNO3     50%

                                                                    H2O        50%

Исходные данные для расчета

- концентрация крепкой азотной кислоты – 98%

- концентрация серной кислоты, поступающей в колонну – 91%

- концентрация отработанной кислоты, выходящей из колонны – 70%

Расчет составлен на 1 тонну условной отработанной кислоты, поступающей в колонну ГБХ, учитывая, что ОК – 80%, а смесь азотной кислоты и воды – 20%.

Выбираем средний состав кислот:

                                                         HNO3     27%

                                                         H2SO4     45%

                                                         H2O        28%

Принимаем, что в отработанной кислоте 3% АК в виде окислов азота связаны в нитрозилсерную кислоту по реакции (1):

 

2H2SO4 + N2O3 2HNSO5  + H2O                                                  (1)

 

Пересчитав состав кислот, получим:

HNO3        -     25%

H2SO4        -     45%

H2O           -     26,1%

N2O3          -     0,9%

HNSO5      -     3%

Всего        -     100%

 

В процессе разгонки кислотных смесей и гидролиза HNSO5 в колонне протекают следующие реакции:

- разложение HNSO5

 

2HNSO5 + H2O = 2H2SO4 + NO2                                                                  (2)

 

- разложение HNO3

 

2HNO3 2NO2 + H2O + 1/2O2                                                                                          (3)

2HNO3  N2 + H2O + 2*1/2 O2                                                                                           (4)

 

- разложение N2O3

N2O3(газ) NO (газ) + NO2 (газ)                                                             (5)

 

В колонну ГБХ поступает:

1. Отработанная кислота в количестве 1000 кг,

В том числе:

HNO3        -     250 кг

H2SO4        -     450 кг.

H2O           -     261 кг.

N2O3          -     9 кг.

HNSO5      -     30 кг.

2. Купоросное масло 91% - х кг.

3. Перегретый пар – у кг.

4. Воздух, подсасываемый из помещения

 

Из колонны выходит:

1. Разбавленная 70% H2SO4= кг

2. Крепкая 98% HNO3 = =242,3 кг

3. Нитрозные газы

а) в колонне 1/2 количества (1,5%) HNO3 разлагается до NO2 по реакции (3)

242,3х0,015 = 3,64 кг.

При этом образуются газообразные вещества:

NO2= =2,65 кг

H2O = =0,52 кг

O2 = =0,46 кг.

б) по реакции (4) разлагается ½ количества (1,5%) HNO3 до N2:

N2= =0,81 кг.

H2O = =0,52 кг.

O2 = =2,3 кг

в) при разложении N2O3 по реакции (5):

NO2= =5,45 кг

NO = = 3,55 кг

г) при разложении HNSO5 по реакции (2):

NO2= =5,43 кг

NO = = 3,54 кг

 

Выделившаяся в процессе реакции серная кислота вновь войдет в состав отработанной кислотной смеси и доля ее в последней составит 450кг.

д) с нитрозными газами уносится 1% HNO3:

242,3х0,01 = 2,42 кг.

В результате гидролиза получается следующее количество сухих нитрозных газов (без учета подсоса воздуха):

  g, кг u, нм3
     
NO2 13,5 6,87
NO 7,09 5,29
N2 0,81 0,65
O2 2,76 1,93
HNO3 2,42 0,86
Всего 26,58 15,6

 

Подсос воздуха uпод через неплотности соединений царг колонны принимаем равным 100% объема сухих газов

uпод = 15.6 нм3, в том числе:

N2=0,78*15,6=12,17 нм3;

O2=0,21*15,6=3,28 нм3;

или

N2= =15,21 кг;

O2= =4,68 кг;

 

Итого: uпод=19,89 кг.

Принимаем, что подсасываемый воздух поступает при t=20 ОС, относительная влажность 80%

Количество водяных паров, поступающих в колонну с воздухом (14,61*0,8)10-3*19,89=0,23 кг, где

d0 = 14.61  - влагосодержание

Всего воздуха: 19,89+0,23=20,12 кг.

Количество и состав сухих газов, выходящих из колонны с учетом подсоса воздуха:

  g, кг u, нм3
     
NO2 13,5 6,87
NO 7,09 5,29
HNO3 2,42 0,86
N2 16,02 12,82
O2 7,44 5,21
Всего 46,47 31,11

 

 

Количество паров воды, уходящих из колонны (за конденсатом) с нитрозными газами при t=35 ОС

H2O = , для

v= 30  нм3

p=1,8 мм. Рт. Ст – парциальное давление воды над 98% HNO3 при t=35 ОС

p=133.3*1.8=239.9 Па

 

 

H2O =  кг

в объеме v=  нм3

Общий состав газов, поступающих на поглощение:

  g, кг u, нм3
     
NO2 13,5 6,87
NO 7,09 5,29
N2 16,02 12,82
O2 7,44 5,21
H2O 0,07 0,057
HNO3 2,42 0,86
Всего 46,54 31,12

 

Таблица №10 - Сводный материальный баланс отделения концентрирования HNO3

Приход:  
1. Отработанная кислота 1000 кг.
2. Купоросное масло х кг.
3. Перегретый пар у кг.
4. Воздух через неплотности 19,89 кг.
Итого: 1019,89+х+у
Расход:  
1. Слабая H2SO4 70% (450+х)/0,7 кг.
2. Крепкая HNO3 98% 242,3 кг.
3. Нитрозные газы 46,54 кг.
Итого: (931,70+х)/0,7

 

Приравнивая приход к расходу, получаем уравнение материального баланса

1019,89+х+у=931,7+

у=0,43х-88,19

2.7. Расчет теплового баланса [1]

Так как в уравнении материального баланса входит распад пара (у), то будем определять его с помощью уравнения теплового расчета.

Исходные данные:

1. Температура отработанной кислоты, поступающей в колонну - 90 ОС

2. Температура H2SO4 91% - 20 ОС

3. Температура отработанной кислоты H2SO4 70% - 170 ОС

4. Температура выходящих из колонны HNO3 и нитрозных газов – 85 ОС

5. Температура HNO3 98% из конденсатора, поступающей в колонну - 40 ОС

Температура крепкой HNO3 98%, выходящей из колонны в холодильник 85 ОС

6. Температура подсасываемого воздуха 20 ОС

Приход тепла:

1) С отработанной кислотой

Q=q1*c1*t1=1000*2.22*90=119800 кДж; (47732.2 ккал)

c1=2,22  -  удельная теплоемкость отработанный кислоты при температуре 90 ОС

 

2) С перегретым паром, теплосодержание которого при t=220 ОС равно 700.8 кДж; Q2=700,8*у

3) Теплота от H2SO4 состоит из физической теплоты  и теплоты разбавления

= +

Физическая теплота определяется по формуле

= = х кДж/(8.4x ккал)

=1,759 кДж/кг град – удельная теплоемкость H2SO4 91% при t=20 ОС

Теплота разбавления H2SO4 определяется разницей теплот разбавления до 70% и 91%.

Удельная теплота разбавления g= (); n=H2O/H2SO4

В H2SO4 с массовой долей 91%, моль:

H2SO4 = х 0,91/98 = 0,0094 х

H2O = х 0,09/18 = 0,005 х

n = 0,005 х/0,0094 х =0,53

 

В H2SO4 70% моль:

Примем (450+х)/0,7=z

H2SO4=z 0.7/98 = 0,007 z

H2O = z 0.3/18 = 0,016 z

n = 0,016 z/0.007 z = 2.38

 

Удельная теплота разбавления  H2SO4 с массовой долей 100% до 91%:

= =4066,1 (17036,8 )

Уд теплота разбавления  H2SO4 с 100% до 70%

 = =10174 (42628,9 )

Удельная теплота разбавления с 91% до 70%:

=42628.9-17036.8=25592.1 (6107.9 ккал)

=17,8*25592,1=455539,4 кДж (108720,6 ккал)

 

=35,18х + 455539,4 кДж (8,4*х + 108720,6 ккал)

4) С HNO3 98%, поступающей из конденсатора в колонну с t=40 ОС

=  = 242,3*40*1,93=18705,56 кДж (4464,3 ккал)

5) С воздухом, подсасываемым из помещения с t=20 ОС

= =19,89*1*20=397,8 кДж (94,94 ккал)

= 1 кДж/кг град – удельная теплоемкость воздуха

 

Всего в колонну приход тепла, кДж

+ + + + =199800 + 700,8 у + 35,18х + 455539,4 + 18705,56 + 397,8 = 674442,76 + 35,18х + 700,8у

 

Расход тепла

1) С парами HNO3 98%, выходящих из колонны:

= =0.98*242.3*1.936*85=39075.43 кДж=9325,9 ккал

2) На испарение HNO3:

=0,98*242,3*i=0,98*242,3*483=114690,28 кДж=27372,38 ккал,

где i=483кДж/кг – теплота испарения 1 кг кислоты.

На испарение 4% H2O, содержащихся в HNO3:



Поделиться:


Последнее изменение этой страницы: 2020-03-14; просмотров: 144; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.76.0 (0.224 с.)