Технология изготовления печатной платы 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Технология изготовления печатной платы



диагностика печатный плата вычислительный

Толщина печатной платы составляет 1,5 мм. Для ее изготовления выбран фольгированный стеклотекстолит марки СФ2-50-1,5.

Для изготовления двусторонней печатной платы третьего класса точности выбираем комбинированный позитивный метод с нанесением сухого фоторезиста.

Этот метод включает в себя следующие операции:

получение заготовки с припуском 10 мм по периметру;

подготовка поверхности (механическая зачистка, промывка, обезжиривание);

сверление монтажных отверстий на станке с числовым программным управлением (ЧПУ);

металлизация отверстий, включающая в себя химическое и гальваническое меднение;

нанесение сухого фоторезиста с помощью ламинаторов;

фотолитография (используется позитивный фотошаблон с высокой точностью изготовления);

засвечивание рисунка (задублевание фоторезиста в пробельных местах под действием ультрафиолетового света);

удаление незадубленного фоторезиста с пробельных мест;

стравливание меди с пробельных мест (опускание платы в хлорное железо);

оплавление оловом для улучшения пайки;

нанесение маски (покрытие готовой платы лаком через трафарет);

упаковка платы в полиэтиленовый пакет.

Достоинства такого метода изготовления платы:

высокая плотность монтажа;

100% металлизация отверстий;

автоматизация процесса.

Также имеется один недостаток: требуется новое оборудование для получения высокой точности в фотолитографии.

 

Получение заготовок

Фольгированные диэлектрики выпускаются размерами (1000…1200) мм, поэтому первой операцией практически любого технологического процесса является резка заготовок. Для резки фольгированных диэлектриков используют роликовые одноножевые, многоножевые и гильотинные прецизионные ножницы. На одноножевых роликовых ножницах можно получить заготовки размером от 50x50 до 500x900 мм при толщине материала (0,025…3) мм. Скорость нарезания плавно регулируется в пределах (2…3,5) м/мин. Точность нарезания - 1 мм. Для удаления пыли, образующейся при нарезании заготовки, ножницы оборудованы пылесосом. Из листов фольгированного диэлектрика одноножевыми роликовыми ножницами нарезаются заготовки с припуском на технологическое поле по 10 мм с каждой стороны. Далее с торцов заготовки напильником снимаются заусенцы во избежание повреждения рук во время технологического процесса. Качество снятия заусенцев определяется визуально.

Резка заготовок не должна вызывать расслаивания диэлектрического основания, образования трещин, сколов, а также царапин на поверхности заготовок.

 

Пробивка базовых отверстий

Базовые отверстия необходимы для фиксации плат во время технологического процесса. Сверление отверстий является разновидностью механической обработки. Это одна из самых трудоемких и важных операций. При сверлении важнейшими характеристиками являются: конструкция сверлильного станка, геометрия сверла, скорость нарезания и скорость осевой подачи. Для правильной фиксации сверла используются специальные высокоточные кондукторы и мощные пылесосы для моментального удаления стружки из зоны сверления. Так как стеклотекстолит является высоко абразивным материалом, применяются твердосплавные сверла. Применение сверл из твердого сплава позволяет повысить производительность труда при сверлении и улучшить чистоту обработки отверстий. В большинстве случаев заготовки сверлят в пакете (высота пакета до 6 мм). Заготовки собираются в кондукторе, закрепляются на сверлильном станке и просверливаются базовые отверстия.

 

Подготовка поверхности заготовок

Качество подготовки поверхности имеет большое значение как при нанесении фоторезиста, так и при осаждении металла.

Широко используют химические и механические способы подготовки поверхности или их сочетания. Консервирующие покрытия легко снимаются органическим растворителем, с последующей промывкой в воде и сушкой. Окисные пленки, пылевые и органические загрязнения удаляются последовательной промывкой в органических растворителях (ксилоле, бензоле, хладоне) и водных растворах фосфатов и соды. Удаление оксидного слоя толщиной не менее 0,5 мкм производят механической очисткой щетками или абразивными валиками. Недостаток этого способа - быстрое зажиривание очищающих валиков, а затем, и очищающей поверхности. Часто для удаления оксидной пленки применяют гидроабразивную обработку Высокое качество зачистки получают при обработке распыленной абразивной пульпой. Гидроабразивная обработка удаляет с фольги заусенцы, образующиеся после сверления, и очищает внутренние медные торцы контактных площадок в отверстиях многосторонних печатных плат от эпоксидной смолы.

Высокое качество очистки получают при гидроабразивной обработке с использованием водной суспензии. На этом принципе работают установки для зачистки боковых поверхностей заготовок и отверстий печатных плат нейлоновыми щетками и пемзовой суспензией. Обработка поверхности производится вращающимися латунными щетками в струе технологического раствора. Установка может обрабатывать заготовки максимальным размером 500x500 мм при их толщине (0,1…3) мм, частота вращения щеток 1200 об/мин, усилие нажатия плат к щеткам 147 Н. Химическое удаление оксидной пленки (декапирование) наиболее эффективно осуществляется в 10%-ном растворе соляной кислоты. К качеству очистки фольгированной поверхности предъявляют высокие требования, так как от этого, зависят адгезия фоторезиста и качество рисунка схемы.

 


Сверление отверстий

Наиболее трудоемкий и сложный процесс в механической обработке печатных плат - получение отверстий под металлизацию. Их выполняют, главным образом, сверлением, так как сделать отверстия штамповкой в приемлемых для производства платах стеклопластика трудно. Для сверления стеклопластиков используют твердосплавный инструмент специальной конструкции. Применение инструмента из твердого сплава позволяет значительно повысить производительность труда при сверлении и зенковании и улучшить чистоту обработки отверстий. Чаще всего сверла изготавливают из тверд оуглеродистых сталей марок У-7, У-10 и У-18. В основном используют две формы сверла: сложно профильные и цилиндрические. Так как стеклотекстолит является высоко абразивным материалом, то стойкость сверл невелика. Так, например, стойкость тонких сверл - около 10 ООО сверлений.

При выборе сверлильного оборудования необходимо учитывать такие особенности, как точность расположения отверстий, необходимость обеспечения абсолютно гладких и перпендикулярных отверстий поверхности платы, обработка плат без заусенцев и так далее. Точность и качество сверления зависят от конструкции станка и сверла. В настоящее время используют несколько типов станков для сверления печатных плат.

Перед сверлением отверстий необходимо подготовить заготовки и оборудование к работе. После сверления необходимо удалить стружку и пыль с платы и продуть отверстия сжатым воздухом. После этого следует проверить количество отверстий и их диаметры, проверить качество сверления. При сверлении не должно образовываться сколов, трещин. Стружку и пыль следует удалять сжатым воздухом.

 

Металлизация отверстий

Она включает химическое и гальваническое меднение. Химическое меднение является первым этапом металлизации отверстий. При этом возможно получение плавного перехода от диэлектрического основания к металлическому покрытию, имеющих разные коэффициенты теплового расширения. Процесс химического меднения основан на восстановлении ионов двухвалентной меди из ее комплексных солей. Толщина слоя химически осажденной меди (0,2…0,3) мкм. Химическо емеднение можно проводить только после специальной подготовки - каталитической активации, которая может проводиться одноступенчатым и двухступенчатым способами. При двухступенчатой активации печатную плату сначала обезжиривают, затем декапируют торцы контактных площадок. Далее следует первый шаг активации - сенсибилизация, для чего платы опускают на (2…3) мин в соляно-кислый раствор дихлорида олова. Второй шаг активации - палладирование, для чего платы помещают на (2…3) мин в соляно-кислый раствор дихлорида палладия. Адсорбированные атомы палладия являются высокоактивным катализатором для любой химической реакции. При одноступенчатой активации предварительная обработка (обезжиривание и декапирование) остается той же, а активация происходит в коллоидном растворе, который содержит концентрированную серную кислоту и катионы палладия при комнатной температуре. Слой химически осажденной меди обычно имеет небольшую толщину (0,2…0,3) мкм, рыхлую структуру, легко окисляется на воздухе, непригоден для токопрохождения, поэтому его защищают гальваническим наращиванием (затяжкой) (1…2) мкм гальванической меди. После гальванической затяжки слой осажденной меди имеет толщину (1…2) мкм. Электролитическое меднение доводит толщину в отверстия до 25 мкм, на проводниках - до (40…50) мкм. Чтобы при травлении проводники и контактные площадки не стравливались их необходимо покрыть защитным металлическим покрытием. Существуют различные металлические покрытия (в основном сплавы), применяемые для защитного покрытия. В данном технологическом процессе применяется сплав олово-свинец. Сплав олово-свинец стоек к воздействию травильных растворов на основе персульфата аммония, хромового ангидрида и других, но разрушается в растворе хлорного железа, поэтому в качестве травителя раствор хлорного железа применять нельзя.

 



Поделиться:


Последнее изменение этой страницы: 2020-03-14; просмотров: 142; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.224.37.68 (0.01 с.)