Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Цель и задачи работы, объекты исследования↑ Стр 1 из 4Следующая ⇒ Содержание книги
Поиск на нашем сайте
Введение
В настоящее время рынок потребления высоконаполненных композиционных магнитотвёрдых материалов, к которым относятся так называемые магнитопласты, является одним из самых динамичных в промышленно развитых странах мира (рост 12,5% в год). Согласно результатам научно-исследовательских и опытно-конструкторских работ магнитопласты (МП) по своей энергоёмкости почти вплотную приблизились к металлокерамическим магнитам, а за счёт своей высокой технологичности стали более эффективными. Это обусловлено относительно простой технологией готовых изделий из магнитопластов в сравнении со спеченными материалами, что связано, прежде всего, с отсутствием в процессе изготовления таких дорогих и сложных операций, как спекание, длительная термическая обработка, шлифование с удалением значительного количества материала. Отлитые под давлением заготовки из магнитопластов выпускаются с малыми допусками и, как правило, не нуждаются в доводочных операциях. Магнитопласты используют в шаговых двигателях принтеров и факсимильных аппаратов, офисной электроники, аудио- и видеооборудовании, в особо компактных двигателях постоянного тока мощностью до 1 кВт. В России промышленное производство высоконаполненных магнитотвердых материалов практически отсутствует, и в этой области страна значительно отстает от передовых промышленно развитых стран. Широкое масштабное освоение эффективной технологии магнитопластов в значительной степени сдерживается недостаточной разработанностью теоретической базы, определяющей закономерности формирования эксплуатационных и технологических свойств высоконаполненных магнитных композиционных материалов и отсутствием необходимого для реализации технологии оборудования и дешевой сырьевой базы. В качестве связующего в магнитопластах могут быть использованы Различные реакто- и термопласты. Использование реактопластов в качестве связующих для МП оправдано только в тех случаях, когда другие полимеры не обеспечивают необходимые требования к технологии их изготовления и эксплуатации. Основной недостаток реактопластов – длительная стадия высокотемпературного отверждения. Поэтому в производстве МП наиболее широко используются полимеры, перерабатываемые высокопроизводительными методами: литьем под давлением, экструзией и прессованием. Особый интерес представляет разработка технологии микрокапсулирования частиц наполнителя в полимерной матрице. Микрокапсулирование может быть выполнено различными способами, в частности методом осаждения полимера на поверхность наполнителя из раствора, методом полимеризационного и поликонденсационного наполнения, т.е. синтезом полимера непосредственно на поверхности наполнителя. Метод полимеризационного наполнения является наиболее перспективным по сравнению с традиционным (смешение) и методом поликонденсационного наполнения ПКМ, так как эти методы имеют ряд недостатков. Поэтому целью дипломного проекта является разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями. Цель и задачи работы, объекты исследования Цель: Разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями. Задачей является изучение влияния продолжительности синтеза на свойства полученного ПКА.
Сырьем для получения магнитопласта является: · ε - капролактам, · вода, · уксусная кислота, · фосфорная кислота · сплав Nd-Fe-B. Выбор данных компонентов обусловлен доступностью и низкой стоимостью сырья, а также требованиями предъявляемыми к магнитопластам.
Капролактам Капролактам - ГОСТ 7850-86 NH (CH2)5CO
Таблица 1 Свойства капролактама
ε -капролактам хорошо растворим в воде (525 г в 100 г Н2О), спирте, эфире, бензоле, плохо - в алифатических углеводородах. Уксусная кислота CH3COOH · Температура плавления, °С 16,6 · Температура кипения, °С / мм рт. ст. 118,1 · Плотность при 20 °С, г/см3 1,0492 · Константа диссоциации в водных растворах при 25 °С 1,76·10-5 Уксусная кислота растворяется в воде.
Фосфорная кислота Фосфорная кислота-Н3РО4
Таблица 2
Вода дистиллированная Вода дистиллированная (H2O) – ГОСТ 6709 – 72.
Сплав Nd-Fe-B В качестве магнитного наполнителя используется сплав Nd-Fe-B производимый ГУП НТЦ «ВНИИНМ имени академика А.А. Бочвара» (г.Москва). Основные характеристики сплава Nd-Fe-B приведены в табл.2. Таблица 2. Свойства магнитных наполнителей
Готовым изделием являются кольцевые магниты с наружным диаметром 6 см, внутренним диаметром 5 см и высотой 5 мм. Магнитопласт, получаемый на основе сплава Nd-Fe-B и полиамидного связующего имеет следующие основные характеристики: Содержание полимера, % 15-20 Содержание НМС, % не более 2 Остаточная магнитная индукция, Тл не менее 0,3 Коэрцитивная сила, кА/м не менее 320-350 Прочность при межслоевом сдвиге, МПа не менее 5 Синтез ПКА ε-Капролактам растирают в фарфоровой ступке. В предварительно взвешенную сухую ампулу берут навеску капролактама с точностью до 0,0002 г. С помощью микропипетки вводят в ампулу расчетное количество активатора. Ампулу быстро запаивают. Затем ампулу помещают в песчаную баню с температурой 260°С для полимеризации капролактама; время полимеризации 6 часов.
Определение НМС Для определения содержания НМС полученный полимер измельчают и кипятят со 100 мл воды в течение 2-х часов в круглодонной колбе с обратным холодильником для удаления мономера и низкомолекулярных примесей. Фильтруют, промывают и сушат. Выход полимера рассчитывают по формуле: , где m0 – навеска полимера до кипячения, г, m1 – навеска полимера после кипячения, сушки, г. Метод термогравиметрического анализа (ТГА)
[Рабек Я. Экспериментальные методы в химии полимеров. В 2-х.:Пер. с англ. - М.: Мир, 1983. - 480 с.].
Термостабильность образцов оценивали по температурному интервалу области интенсивных потерь массы методом термогравиметрического анализа на дериватографе «Паулик - Паулик - Эрдей» фирмы МОМ марки Q-1500D в соответствии с инструкцией к прибору. Условия эксперимента: навеска - 200 мг; среда - воздух; интервал нагрева - до 600°С; скорость нагрева (Vм) - 10°С/мин.; чувствительность - 200. Относительная ошибка не превышает 1%. Энергию активации термодеструкции материалов определяли методом Пилояна по кривой ДТА по формуле: (1) где Е - энергия активации, ккал/моль; R - универсальная газовая постоянная, кал/град*моль; D t - разность температур образца и эталона, °С; С’ - константа. Уравнение (1) можно представить в виде: , где 2,3 -коэффициент перевода натурального логарифма в десятичный.
Это уравнение можно представить в виде: , где а - угловой коэффициент, который равен тангенсу угла наклона прямой к оси абсцисс. Графически энергию активации определяли по тангенсу угла наклона прямой, построенной в координатах lgDl = ¦(1/T*10-3), где Dl - длина отрезка между нулевой линией и кривой ДТА. Отсюда . Технологическая часть Материальные расчеты
Материальный баланс получения магнитов из поликапроамида. Для получения 1 кг изделия расходуется следующее количество компонентов: · капролактам – 0,2185 кг, · феррит бария – 0,8234 кг, · уксусная кислота – 0,0021 кг, · вода – 0,021 кг. Общая масса – 1,0461 кг. Найдем расход каждого из компонентов на одну тонну продукта с учетом потерь: 1. Расход капролактама: 1,0461 кг – 0,2185 кг Х 1 = 208,87 кг 1000 кг – Х 1 кг С учетом 4,95% потерь: 208,87*0,0495 = 10,34 кг. 2. Расход феррита бария: 1,0461 кг – 0,8234 кг Х 2 = 787,11 кг 1000 кг – Х 2 кг С учетом 1,7% потерь: 787,11*0,017 = 13,38 кг. 3. Расход уксусной кислоты: 1,0461 кг – 0,0021 кг Х 3 = 20,07 кг 1000 кг – Х 3 кг С учетом 0,85% потерь: 20,07*0,0085 = 0,17 кг. 4. Расход воды: 1,0461 кг – 0,021 кг Х 4 = 20,07 кг 1000 кг – Х 4 кг С учетом 0,85% потерь: 20,07*0,0085 = 0,17 кг Составляем материальный баланс:
Невязка = (приход - расход)/приход*100% = (1036,12 – 1024,06)/1036,12*100% = 1,16% Заключение Для уменьшения продолжительности процесса синтеза ПКА целесообразно использовать катионную полимеризацию, когда в качестве катализатора используется минеральная кислота. Получение композиционного материала с равномерным распределением наполнителя в полимерной матрице возможно методом полимеризационного наполнения. Этот фактор является особенно важным, так как обеспечивает воспроизводимость эксплуатационных свойств полимерных магнитов. Проведен синтез ПКА с использованием в качестве катализатора воды и фосфорной кислоты. Исследованы основные характеристики ПКА. Установлено, что использование в качестве полимеризации катализатора фосфорной кислоты позволяет снизить продолжительность процесса синтеза. При этом молекулярная масса синтезируемого ПКА равна 26734, что соответствует требованиям к полиамидам. Проведена идентификация синтезированного ПКА методом ИКС. Установлено, что полученный полимер можно идентифицировать как полиамид-6. Установлена возможность полимеризационного наполнения ПКА ферритом стронция. Разработана технологическая схема получения магнитопластов полимеризационного наполнения методом литья под давлением. Сделаны основные материальные расчеты. Рассмотрены безопасность и экологичность проекта, предусмогтрены меры по защите окружающей природной среды. Введение
В настоящее время рынок потребления высоконаполненных композиционных магнитотвёрдых материалов, к которым относятся так называемые магнитопласты, является одним из самых динамичных в промышленно развитых странах мира (рост 12,5% в год). Согласно результатам научно-исследовательских и опытно-конструкторских работ магнитопласты (МП) по своей энергоёмкости почти вплотную приблизились к металлокерамическим магнитам, а за счёт своей высокой технологичности стали более эффективными. Это обусловлено относительно простой технологией готовых изделий из магнитопластов в сравнении со спеченными материалами, что связано, прежде всего, с отсутствием в процессе изготовления таких дорогих и сложных операций, как спекание, длительная термическая обработка, шлифование с удалением значительного количества материала. Отлитые под давлением заготовки из магнитопластов выпускаются с малыми допусками и, как правило, не нуждаются в доводочных операциях. Магнитопласты используют в шаговых двигателях принтеров и факсимильных аппаратов, офисной электроники, аудио- и видеооборудовании, в особо компактных двигателях постоянного тока мощностью до 1 кВт. В России промышленное производство высоконаполненных магнитотвердых материалов практически отсутствует, и в этой области страна значительно отстает от передовых промышленно развитых стран. Широкое масштабное освоение эффективной технологии магнитопластов в значительной степени сдерживается недостаточной разработанностью теоретической базы, определяющей закономерности формирования эксплуатационных и технологических свойств высоконаполненных магнитных композиционных материалов и отсутствием необходимого для реализации технологии оборудования и дешевой сырьевой базы. В качестве связующего в магнитопластах могут быть использованы Различные реакто- и термопласты. Использование реактопластов в качестве связующих для МП оправдано только в тех случаях, когда другие полимеры не обеспечивают необходимые требования к технологии их изготовления и эксплуатации. Основной недостаток реактопластов – длительная стадия высокотемпературного отверждения. Поэтому в производстве МП наиболее широко используются полимеры, перерабатываемые высокопроизводительными методами: литьем под давлением, экструзией и прессованием. Особый интерес представляет разработка технологии микрокапсулирования частиц наполнителя в полимерной матрице. Микрокапсулирование может быть выполнено различными способами, в частности методом осаждения полимера на поверхность наполнителя из раствора, методом полимеризационного и поликонденсационного наполнения, т.е. синтезом полимера непосредственно на поверхности наполнителя. Метод полимеризационного наполнения является наиболее перспективным по сравнению с традиционным (смешение) и методом поликонденсационного наполнения ПКМ, так как эти методы имеют ряд недостатков. Поэтому целью дипломного проекта является разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями. Цель и задачи работы, объекты исследования Цель: Разработка технологии полимеризационного наполнения ПКА дисперсными наполнителями. Задачей является изучение влияния продолжительности синтеза на свойства полученного ПКА.
Сырьем для получения магнитопласта является: · ε - капролактам, · вода, · уксусная кислота, · фосфорная кислота · сплав Nd-Fe-B. Выбор данных компонентов обусловлен доступностью и низкой стоимостью сырья, а также требованиями предъявляемыми к магнитопластам.
Капролактам Капролактам - ГОСТ 7850-86 NH (CH2)5CO
Таблица 1 Свойства капролактама
ε -капролактам хорошо растворим в воде (525 г в 100 г Н2О), спирте, эфире, бензоле, плохо - в алифатических углеводородах. Уксусная кислота CH3COOH · Температура плавления, °С 16,6 · Температура кипения, °С / мм рт. ст. 118,1 · Плотность при 20 °С, г/см3 1,0492 · Константа диссоциации в водных растворах при 25 °С 1,76·10-5 Уксусная кислота растворяется в воде.
Фосфорная кислота Фосфорная кислота-Н3РО4
Таблица 2
Вода дистиллированная Вода дистиллированная (H2O) – ГОСТ 6709 – 72.
Сплав Nd-Fe-B В качестве магнитного наполнителя используется сплав Nd-Fe-B производимый ГУП НТЦ «ВНИИНМ имени академика А.А. Бочвара» (г.Москва). Основные характеристики сплава Nd-Fe-B приведены в табл.2. Таблица 2. Свойства магнитных наполнителей
Готовым изделием являются кольцевые магниты с наружным диаметром 6 см, внутренним диаметром 5 см и высотой 5 мм. Магнитопласт, получаемый на основе сплава Nd-Fe-B и полиамидного связующего имеет следующие основные характеристики: Содержание полимера, % 15-20 Содержание НМС, % не более 2 Остаточная магнитная индукция, Тл не менее 0,3 Коэрцитивная сила, кА/м не менее 320-350 Прочность при межслоевом сдвиге, МПа не менее 5
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2020-03-14; просмотров: 144; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.105.40 (0.011 с.) |