Межокеанский обмен - движущий механизм колебаний климата 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Межокеанский обмен - движущий механизм колебаний климата



Отмеченные выше различия в свойствах отдельных бассейнов приводят к выводу о существовании межокеанского обмена свойствами. С Северной Атлантики, по-видимому, и начинается глобальная межокеанская циркуляция вод (рис. 1).

 

Рис. 1. Межокеанская циркуляция вод

 

На схеме видно, как в поверхностных слоях идет поток теплых вод из Тихого и Индийского океанов в субполярные районы Северной Атлантики. Процессы взаимодействия между океаном и атмосферой приводят к охлаждению воды и ее погружению вглубь океана, а также формированию водных масс: промежуточной Лабрадорской и глубинной Северо-Атлантической. Они и образуют поток холодных вод, движущийся в противоположном направлении.

Устойчивая работа такого теплового океанского конвейера может давать сбои, когда в области традиционного образования глубинных вод не возникают необходимые условия для развития процессов глубокой конвекции (погружения поверхностных вод вглубь океана). При этом должна произойти перестройка всей циркуляции мирового океана, поскольку поверхностному теплому потоку уже нет возможности беспрепятственно проникать далеко на север: без опускания холодных вод для него там нет свободного пространства. Интересно отметить, что оба режима работы конвейера устойчивы, что было показано в теоретических разработках и при моделировании процессов в океане. Для пояснения еще раз обратимся к климату, трясущемуся в кузове движущегося грузовика. Представим себе, что климат - это монета, каждая сторона которой соответствует одному из его устойчивых состояний. До определенного момента подпрыгивающая в кузове монета остается на одной из своих сторон, сохраняя текущее состояние климата. Лишь на отдельных "выдающихся" ухабах монета может перевернуться, что обернется сменой климатической ситуации. Далее монета может пребывать в новом состоянии сколь угодно долго до нового "ухаба".

Есть веские основания считать, что "ухабы" возникают на пути климата вовсе не случайно. Вероятность их появления определяется системой прямых и обратных связей, существующих в климатической системе Земли, которые и организуют естественную цикличность смены климатических эпох. Поэтому информация о состоянии океанского конвейера даст возможность определить современное состояние климата и тенденции его развития.

Когда уровень мирового океана максимальный, то значительная часть суши оказывается под водой (до 40% по сравнению с современной). Отражательная способность поверхности Земли уменьшается (вода хуже отражает свет, чем поверхность суши). Значит, энергии отражается меньше и она идет на нагрев вод океана, а также суши. Температура при этом повышается. Когда площадь суши увеличивается, то происходит обратное - больше солнечной энергии отражается и температура понижается (Гетов Л. В., 1986).

Крупномасштабные изменения глубины мирового океана, которые длятся сотни миллионов лет, обусловлены изменением скоростей приращения литосферных плит в районах рифтовых долин срединно-океанических хребтов. Дело в том, что при быстром раздвижении плит вновь образующаяся океаническая кора не успевает остывать и поэтому формирует "мелкий" океан. Поскольку количество воды неизменное, то часть ее должна выплеснуться на сушу и затопить ее. Когда же скорость приращения литосферных плит уменьшается, то образовавшаяся океаническая кора постепенно остывает и сжимается. Поэтому океан становится "глубоким". При этом воде хватает места в океане - она оставляет сушу.

Перемещение материков по поверхности Земли в составе литосферных плит также оказывает огромное влияние на изменения климата за продолжительные промежутки времени.

Любопытно, что следы оледенения специалисты находят почти на всем протяжении Африки - от северной до ее южной оконечности. Значит ли, что в былые времена ледники достигали даже экватора? Отнюдь нет. Не ледники достигали экватора, а сама Африка в какие-то периоды устремлялась от экватора навстречу ледникам. Ученые установили, что всегда в периоды оледенений один из материков должен находиться в районе полюса. Когда происходило замещение воды сушей (у полюса появлялся материк), то увеличивалась отражательная способность поверхности Земли, а значит, температура понижалась (происходило образование льдов). К тому же районы полюсов получают наименьшее количество солнечной энергии. Поэтому у полюсов осадки выпадают в виде снега. Весь снег не тает, из года в год он накапливается и превращается в лед. Так формируется около полюсов ледниковый покров - своего рода глобальный холодильник. Он и оказывает влияние на климат всей планеты.

Совсем по-другому развиваются события в том случае, если на полюсе оказывается не материк, а океан. Тогда ледниковый покров возникнуть не может. Поэтому у полюсов температура в теплую эпоху не должна быть ниже нуля градусов, а на экваторе не более 30°С. В настоящее время у одного полюса - южного - находится Антарктида, а у северного полюса - океан. Над океаном, в Арктике, в 3,5 раза теплее, чем над материком в Антарктике.Так выражается влияние океана у полюса.

История движения континентов такова, что они вместе составляли один суперконтинент, но затем они разошлись в разные стороны. Это просто не могло не вызывать изменения климата хотя бы уже потому, что менялась отражательная способность земной поверхности. Значит, менялось количество энергии, поглощаемой Землёй, которая шла на нагрев. В результате средняя температура поверхности Земли была выше, чем сейчас (Березина Н.А., 1989).

Энергия мирового океана

 

Запасы энергии в мировом океане колоссальны. Так, тепловая (внутренняя) энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж. Кинетическая энергия океанских течений оценивается величиной порядка 1018 Дж. Однако пока что люди умеют утилизовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений (Моисеев П.А., 1989).

 

Энергия приливов

Наиболее очевидным способом использования океанской энергии представляется постройка приливных электростанций (ПЭС).

Приливы обусловлены силами притяжения Луны и Солнца в сочетании с центробежными силами, развивающимися при вращении систем Земля-Луна и Земля-Солнце. Движение этих тел относительно друг друга порождает различные приливные циклы: полусуточный, весенний квадратурный, полугодовой и другие более длительные циклы. Все оказывают влияние на уровень подъема воды, и знание этих колебаний необходимо для правильного проектирования приливных энергетических систем.

Амплитуда приливов может значительно увеличиваться за счет таких факторов, как склоны, воронки, характерное отражение и резонанс. Наиболее часто такие условия наблюдаются в устьях рек. Теоретически приливные электростанции могли бы производить в целом 635 тыс. ГВт·ч/год электроэнергии, что является энергетическим эквивалентом более чем 1 млрд баррелей нефти. Наиболее перспективными в этом отношении районами являются залив Фанди в Канаде и США, залив Кука на Аляске, Шозе в бухте Мон-Сен-Мишель во Франции, Мезенский залив в России, залив Асанман в Южной Корее.

С незапамятных времен человек стремился использовать энергию приливов. Первые приливные мельницы появились на побережье Бретани, Андалузии и Англии еще в ХII в. В более поздние времена сотни таких устройств приводили в движение лесопильные и мукомольные машины в британских владениях на территории Новой Англии (Гетов Л.В., 1986).

В настоящее время действует совсем немного приливных станций. Электростанция Ранс является первым и крупнейшим предприятием такого рода в мире. Она была задумана как прототип более крупных приливных станций на побережье Бретани. Система использует двадцать четыре 10-мегаваттных турбины Каплана, обладает проектной мощностью 240 МВт и ежегодно производит около 50 ГВт•ч электроэнергии. Амплитуда прилива в устье реки составляет 14 м. Плотина длиной 750 м ограничивает бассейн площадью 22 км2, который содержит 180 млн м3 полезной воды.

Другая крупная приливная электростанция мощностью 20 МВт расположена в Аннаполис-Ройал, в заливе Фанди (провинция Новая Шотландия, Канада). Она была официально открыта в сентябре 1984 г. Система смонтирована на острове Хогс в устье р. Аннаполис на основе уже существующей дамбы, защищающей плодородные земли от затопления морской водой в период штормов. Амплитуда прилива колеблется от 4,4 до 8,7 м.

Возможное воздействие приливных электростанций на окружающую среду будет связано с увеличением амплитуды приливов на океанской стороне плотины. Это может приводить к затоплению суши и сооружений при высоких приливах или во время штормов и к вторжению солёной воды в устья рек и подземные водоносные слои. Водные пищевые цепи и сообщества организмов в приливной зоне могут пострадать в результате изменения уровня воды и скорости течения как за плотиной, так и перед ней; для водных организмов небезопасно так же прохождение через турбины.

Следует так же упомянуть ещё одну отрицательную черту приливной энергии - то, что её выработка непостоянна. При обычной эксплуатации приливной энергии электричество вырабатывается только в начале прилива (или отлива). Эта циклическая выработка энергии вряд ли будет соответствовать суточным циклам потребности в ней. Пиковая потребность и пиковая выработка могут иногда совпадать, так как часы приливов сдвигаются по мере смены времён года, но чаще такого совпадения не будет. Это означает, что выработка энергии другими, центральными, станциями должна снижаться, когда темп приливной выработки достигает максимума, и возрастать, когда он падает (Березина Н.А., 1984).

 

Тепловая энергия океана

Температура воды океана в разных местах различна. Между тропиком Рака и тропиком Козерога поверхность воды нагревается до 82 градусов по Фаренгейту (27°C). На глубине в 2000 футов (600 метров) температура падает до 35, 36, 37 или 38 градусов по Фаренгейту (2-3,5°С). Возникает вопрос: есть ли возможность использовать разницу температур для получения энергии? Могла бы тепловая энергоустановка, плывущая под водой, производить электричество? Да, и это возможно.

В 20-е годы нашего столетия Жорж Клод, одаренный, решительный и весьма настойчивый французский физик, решил исследовать такую возможность. Выбрав участок океана вблизи берегов Кубы, после серии неудачных попыток, он сумел получить установку мощностью 22 киловатта. Это явилось большим научным достижением и приветствовалось многими учеными (Вундцеттель М.Ф., 2003).

Сейчас приобрела большое внимание «океанотермическая энергоконверсия» (ОТЭК), т.е. получение электроэнергии за счет разности температур между поверхностными и засасываемыми насосом глубинными океанскими водами, например при использовании в замкнутом цикле турбины таких легкоиспаряющихся жидкостей как пропан, фреон или аммоний.

Последние десятилетия характеризуется определенными успехами в использовании тепловой энергии океана. Так, созданы установки мини-ОТЕС и ОТЕС-1 (Осеаn Тhеrmal Energy Conversion, т.e. преобразование тепловой энергии океана). В августе 1979 г. вблизи Гавайских островов начала работать теплоэнергетическая установка мини-ОТЕС. Пробная эксплуатация установки в течение трех с половиной месяцев показала ее достаточную надежность. При непрерывной круглосуточной работе не было срывов, если не считать мелких технических неполадок, обычно возникающих при испытаниях любых новых установок. Ее полная мощность составляла в среднем 48,7 кВт, максимальная -53 кВт; 12 кВт (максимум 15) установка отдавала во внешнюю сеть на полезную нагрузку, точнее - на зарядку аккумуляторов. Остальная вырабатываемая мощность расходовалась на собственные нужды установки. В их число входят затраты энергии на работу трех насосов, потери в двух теплообменниках, турбине и в генераторе электрической энергии.

Установка мини-ОТЕС смонтирована на барже. Под ее днищем помещен длинный трубопровод для забора холодной воды. Трубопроводом служит полиэтиленовая труба длиной 700 м с внутренним диаметром 50 см. Трубопровод прикреплен к днищу судна с помощью особого затвора, позволяющего в случаи необходимости ого быстрое отсоединение. Полиэтиленовая труба одновременно используется и для заякоривания системы труба-судно. Оригинальность подобного решения не вызывает сомнений, поскольку якорные постановки для разрабатываемых ныне более мощных систем ОТЕС являются весьма серьезной проблемой (Гетов Л.В., 1986).

Новые станции ОТЕС на мощность во много десятков и сотен мегаватт проектируются без судна. Это - одна грандиозная труба, в верхней части которой находится круглый машинный зал, где размещены все необходимые устройства для преобразования анергии. Верхний конец трубопровода холодной воды расположится в океане на глубине 25-50 м. Машинный зал проектируется вокруг трубы на глубине около 100 м. Там будут установлены турбоагрегаты, работающие на парах аммиака, а также все остальное оборудование. Масса всего сооружения превышает 300 тыс. т. Труба-монстр, уходящая почти на километр в холодную глубину океана, а в ее верхней части что-то вроде маленького островка. И никакого судна, кроме, конечно, обычных судов, необходимых для обслуживания системы и для связи с берегом.

Представляется, что некоторые из предлагавшихся океанских энергетических установок могут быть реализованы, и стать рентабельными уже в настоящее время (Березина Н.А., 1989).



Поделиться:


Последнее изменение этой страницы: 2020-03-02; просмотров: 165; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.79.45 (0.021 с.)