![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Развитие мировой и отечественной атомной энергетикиСодержание книги Поиск на нашем сайте
ВВЕДЕНИЕ
Анализ сегодняшнего состояния мирового рынка борсодержащих материалов, сопоставление и обобщение всех вышеперечисленных и других существенных факторов позволяют прогнозировать значительное увеличение спроса на изотопнообогащенные борсодержащие материалы и изделия, при условии снижения себестоимости их производства, гарантии качества и обеспечения требуемых объемов поставок. Реакторы нового поколения, особенно на быстрых нейтронах, в качестве материала поглощающих стержней органов регулирования СУЗ, используют B-10. Применение материалов, обогащенных по B-10, может быть в следующих установках и устройствах: стержни системы управления и защиты (СУЗ) реакторов; нейтронные выгорающие поглотители из ZrB2 и HfB2, контейнеры для хранения и перевозки отработанного топлива, различных типов нейтронная защита и др. В качестве области потенциально широкого использования B-10 все чаще фигурирует медицина: нейтронозахватная (высокоточная) терапия раковых опухолей В конце 80-х годов, в связи с распадом СССР отечественная атомная отрасль лишилась своего единственного производства: в НИИ Стабильных изотопов, г. Тбилиси, Грузия. Возникшая таким образом с начала 90-х годов импортная зависимость по B-10 и растущая потребность отечественной атомной энергетики в этом высокоэффективном нейтронном поглотителе потребовали принятия срочных мер для воссоздания отечественного производства высокообогащенного В-10. Природный бор состоит из двух стабильных изотопов - B-10 и B-11. Их содержание в природных соединениях составляет, в среднем, 19,3 % ат. и 80,7 % ат., соответственно. Ядерные свойства B-10 и B-11 сильно различаются. Их сечения захвата тепловых нейтронов различаются более чем в 80 тыс. раз и составляют, соответственно, порядка 4000 барн и < 0,05 барн. Стабильный изотоп бора давно известен как высокоэффективный нейтронный поглотитель. Он считается одним из наиболее перспективных и в определенном смысле безальтернативный в атомной энергетике В мировой практике нашли применение два базовых метода обогащения В-10: низкотемпературна я ректификация трифторида бора и метод химического изотопного обмена, так называемый «анизольный процесс». В основу обоих технологических комплексов положены насадочные колонны, использующие разделение природной изотопной смеси этими двумя методами. Однако для обоих методов общим является то обстоятельство, что в узлах обращения потоков В-10 накапливается в жидкой фазе.
Впервые элементарный бор был получен в 1892 г магнийтермическим способом. Однако, получаемый при этом бор был сильно загрязнен примесями: окислами бора и боридом магния, очистка от которых создавала дополнительные определенные проблемы. Первый достаточно химически чистый аморфный бор был получен лишь в 1909 г Вайнтраубом. Для этого был использован способ прямого восстановления бора из хлорида водородом в электрической дуге. В период 50-60 гг. в США и СССР проводились активные опыты по разработке технологии для восстановления обогащенного В-10. Примененный сначала метод осаждения аморфного бора-10 на раскаленной нити в результате восстановления трифторида бора в токе водорода впоследствии был признан неэффективным, и оба изотопных центра США и СССР в результате отказались от использования этого метода для промышленного производства аморфного B-10 из трифторида B-10. Последние годы эти работы проводились под руководством И.А. Байрамашвили. В настоящее время в бывшем НИИИСИ используется метод электрохимического выделения бора из расплавов солей. Точных данных о производстве аморфного B-10 в центрах США и Японии нет, но предположительно они применяют аналогичную технологию. АНАЛИТИЧЕСКИЙ ОБЗОР Курс на быструю энергетику О компании Игл-Пичер (Eagle-Picher Corp.), США. В 1976 г на базе многолетнего опыта работ по производству свинцовой защиты от радиации создается новое направление: производство обогащенного В-10 для защиты от нейтронов. С начала 90-х годов до настоящего времени фирма имеет производство В-10 до 2 т/год. История возникновения и развития В-10-производства в США. В 40-х годах работы по обогащению В-10 США проводили в закрытом исследовательском центре в пригороде Model City (Буффало, штат Нью-Йорк). К началу 50-х было разработано и запущено обогатительное оборудование с проектной мощностью до 300 кг/год при 90 %-обогащении. Технология оказалась весьма капризной (предположительно низкотемпературная ректификация трифторида бора), постоянно возникали сбои и остановки. При этом время выхода в равновесие составляло несколько недель, и каждый сбой требовал практически запуска с самого начала.
ЕР включилось в тематику В-10 работ несколько раньше, в начале 60-х: Комиссия по атомной энергии США предложила ЕР перевести ранее наработанный В-10 в форму элементарного В-10, т.е. выполнить чисто металлургическую задачу. Тогда для персонала ЕР стало ясно, что коммерческий потенциал В-10 достаточно высок и это в первую очередь атомные электростанции. В 1972 г ЕР создает собственную «пилотную» установку по обогащению изотопов с производительностью 35 кг/год (90 % по В-10). При этом ЕР использует новую технологию: химический изотопный обмен в системе «трифторид - комплекс с диметиловым эфиром». Работы на первой установке в Model City продолжалось примерно до 1973 г, когда правительством было принято решение о продаже оборудования фирме ЕР (приватизация). И ЕР начало активно разворачивать работы по обогащению В-10 на новом месте. В результате в Куапо (Quapaw, OK) появляется производство высокообогащенного В-10 с высоким потенциалом развития. Однако технологические проблемы сохранились и после запуска на новом месте. В 1974 г, ЕР на базе технологии своей «пилотной» 35-кг-установки начинает создание новой коммерческого производства изотопов бора (по новой технологии). Разработка была закончена в 1975, запущена в середине 1976 г, а первые партии В-10 с новой установки были получены в начале 1977 г. При этом дальнейшее совершенствование технологии и оборудования сочеталось с наращиванием общей производительности. В результате действующая производительность к концу 70-х стала порядка 2000 кг/год при обогащении 92 %. Однако ЕР постоянно декларирует возможность (легкого наращивания) производительности до 9000 кг/год 96 %-обогащения по В-10. По оценкам специалистов такой потенциал обеспечивает башня, позволяющая разместить соответствующее число высотных обогатительных колонн. Однако из-за различных проблем пока более 2000 кг/год ЕР никогда не производила. Предполагается, что основная причина это высокая себестоимость производства.
Методы обогащения B-10 Метод ректификации BF3 Этот метод был еще в начале 60-х годов достаточно обстоятельно исследован в СССР и Великобритании. Однако в начале 70-х метод был признан неперспективным по причине чрезвычайно малого коэффициента разделения 1,007 и относительно высокого потребления жидкого азота.
ЦЕЛИ И ЗАДАЧИ РАБОТЫ эфир бор тетрафторборат калий 1) Выбор элементов и оптимизация технологии синтеза тетрафторбората калия в водном растворе. ) Синтез элементарного В-10. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ ВВЕДЕНИЕ
Анализ сегодняшнего состояния мирового рынка борсодержащих материалов, сопоставление и обобщение всех вышеперечисленных и других существенных факторов позволяют прогнозировать значительное увеличение спроса на изотопнообогащенные борсодержащие материалы и изделия, при условии снижения себестоимости их производства, гарантии качества и обеспечения требуемых объемов поставок. Реакторы нового поколения, особенно на быстрых нейтронах, в качестве материала поглощающих стержней органов регулирования СУЗ, используют B-10. Применение материалов, обогащенных по B-10, может быть в следующих установках и устройствах:
стержни системы управления и защиты (СУЗ) реакторов; нейтронные выгорающие поглотители из ZrB2 и HfB2, контейнеры для хранения и перевозки отработанного топлива, различных типов нейтронная защита и др. В качестве области потенциально широкого использования B-10 все чаще фигурирует медицина: нейтронозахватная (высокоточная) терапия раковых опухолей В конце 80-х годов, в связи с распадом СССР отечественная атомная отрасль лишилась своего единственного производства: в НИИ Стабильных изотопов, г. Тбилиси, Грузия. Возникшая таким образом с начала 90-х годов импортная зависимость по B-10 и растущая потребность отечественной атомной энергетики в этом высокоэффективном нейтронном поглотителе потребовали принятия срочных мер для воссоздания отечественного производства высокообогащенного В-10. Природный бор состоит из двух стабильных изотопов - B-10 и B-11. Их содержание в природных соединениях составляет, в среднем, 19,3 % ат. и 80,7 % ат., соответственно. Ядерные свойства B-10 и B-11 сильно различаются. Их сечения захвата тепловых нейтронов различаются более чем в 80 тыс. раз и составляют, соответственно, порядка 4000 барн и < 0,05 барн. Стабильный изотоп бора давно известен как высокоэффективный нейтронный поглотитель. Он считается одним из наиболее перспективных и в определенном смысле безальтернативный в атомной энергетике В мировой практике нашли применение два базовых метода обогащения В-10: низкотемпературна я ректификация трифторида бора и метод химического изотопного обмена, так называемый «анизольный процесс». В основу обоих технологических комплексов положены насадочные колонны, использующие разделение природной изотопной смеси этими двумя методами. Однако для обоих методов общим является то обстоятельство, что в узлах обращения потоков В-10 накапливается в жидкой фазе. Впервые элементарный бор был получен в 1892 г магнийтермическим способом. Однако, получаемый при этом бор был сильно загрязнен примесями: окислами бора и боридом магния, очистка от которых создавала дополнительные определенные проблемы. Первый достаточно химически чистый аморфный бор был получен лишь в 1909 г Вайнтраубом. Для этого был использован способ прямого восстановления бора из хлорида водородом в электрической дуге. В период 50-60 гг. в США и СССР проводились активные опыты по разработке технологии для восстановления обогащенного В-10. Примененный сначала метод осаждения аморфного бора-10 на раскаленной нити в результате восстановления трифторида бора в токе водорода впоследствии был признан неэффективным, и оба изотопных центра США и СССР в результате отказались от использования этого метода для промышленного производства аморфного B-10 из трифторида B-10. Последние годы эти работы проводились под руководством И.А. Байрамашвили.
В настоящее время в бывшем НИИИСИ используется метод электрохимического выделения бора из расплавов солей. Точных данных о производстве аморфного B-10 в центрах США и Японии нет, но предположительно они применяют аналогичную технологию. АНАЛИТИЧЕСКИЙ ОБЗОР Развитие мировой и отечественной атомной энергетики Курс на быструю энергетику О компании Игл-Пичер (Eagle-Picher Corp.), США. В 1976 г на базе многолетнего опыта работ по производству свинцовой защиты от радиации создается новое направление: производство обогащенного В-10 для защиты от нейтронов. С начала 90-х годов до настоящего времени фирма имеет производство В-10 до 2 т/год. История возникновения и развития В-10-производства в США. В 40-х годах работы по обогащению В-10 США проводили в закрытом исследовательском центре в пригороде Model City (Буффало, штат Нью-Йорк). К началу 50-х было разработано и запущено обогатительное оборудование с проектной мощностью до 300 кг/год при 90 %-обогащении. Технология оказалась весьма капризной (предположительно низкотемпературная ректификация трифторида бора), постоянно возникали сбои и остановки. При этом время выхода в равновесие составляло несколько недель, и каждый сбой требовал практически запуска с самого начала. ЕР включилось в тематику В-10 работ несколько раньше, в начале 60-х: Комиссия по атомной энергии США предложила ЕР перевести ранее наработанный В-10 в форму элементарного В-10, т.е. выполнить чисто металлургическую задачу. Тогда для персонала ЕР стало ясно, что коммерческий потенциал В-10 достаточно высок и это в первую очередь атомные электростанции. В 1972 г ЕР создает собственную «пилотную» установку по обогащению изотопов с производительностью 35 кг/год (90 % по В-10). При этом ЕР использует новую технологию: химический изотопный обмен в системе «трифторид - комплекс с диметиловым эфиром». Работы на первой установке в Model City продолжалось примерно до 1973 г, когда правительством было принято решение о продаже оборудования фирме ЕР (приватизация). И ЕР начало активно разворачивать работы по обогащению В-10 на новом месте. В результате в Куапо (Quapaw, OK) появляется производство высокообогащенного В-10 с высоким потенциалом развития. Однако технологические проблемы сохранились и после запуска на новом месте. В 1974 г, ЕР на базе технологии своей «пилотной» 35-кг-установки начинает создание новой коммерческого производства изотопов бора (по новой технологии). Разработка была закончена в 1975, запущена в середине 1976 г, а первые партии В-10 с новой установки были получены в начале 1977 г. При этом дальнейшее совершенствование технологии и оборудования сочеталось с наращиванием общей производительности. В результате действующая производительность к концу 70-х стала порядка 2000 кг/год при обогащении 92 %. Однако ЕР постоянно декларирует возможность (легкого наращивания) производительности до 9000 кг/год 96 %-обогащения по В-10.
По оценкам специалистов такой потенциал обеспечивает башня, позволяющая разместить соответствующее число высотных обогатительных колонн. Однако из-за различных проблем пока более 2000 кг/год ЕР никогда не производила. Предполагается, что основная причина это высокая себестоимость производства.
|
|||||||||
Последнее изменение этой страницы: 2020-03-02; просмотров: 172; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.128.197.182 (0.011 с.) |