Термоэлектрический скважинный дебитомер СТД. Техническая характеристика скважинного термокондуктивного дебитомера 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Термоэлектрический скважинный дебитомер СТД. Техническая характеристика скважинного термокондуктивного дебитомера

Поиск

1) Назначение – исследование скорости потока жидкости по колонне по результатам измерения приращения температур. Прибор СТД-2 используется для фонтанирующих и нагнетательных скважин; СТД–4 – для скважин, эксплуатирующихся при помощи штанговых насосов.

2) Тип прибора – беспакерный.

3) Аппаратура рассчитана для измерений на одножильном бронированном кабеле и на работу с серийными каротажными станциями.

4) Параметры датчика:

сопротивление при 20°С, Ом………………………………………1000±4

наружный диаметр корпуса датчика, мм………………..……………….8

длина, мм……………………….…………...…………………………...300

рабочий ток, мА:

в режиме дебитомера……………………………………...…..120 или 150

в режиме термометра………….……………………………………10–12

5) Запись дебитограмм как по точкам (около 5 мин на 1 точку),

так и непрерывно со скоростью порядка 100 м/ч, что соответствует

минимальной скорости современных подъемников.

6) Порог чувствительности (в начале шкалы) –около 4 м3/сут по воде, около 1–3 м3/сут по нефти.

7) Максимальное рабочее давление 360 кгс/см2

8) Максимальная рабочая температура +80°С

9) Габариты скважинного прибора, мм:

СТД-2: диаметр –36, длина –540

СТД-4: диаметр –20, длина –430.

10) Вес скважинного прибора около 1 кг.

Термоэлектрический скважинный дебитомер СТД работает по принципу термоанемометра. На рис. 3 показана упрощенная электрическая схема дебитомера. Сопротивление датчика дебитомера R д нагревается проходящим по нему током (120–150 мА) и его температура становится выше температуры среды в скважине. В местах притока жидкости (газа) датчик охлаждается, в результате чего изменяется его сопротивление. Это изменение сопротивления фиксируется мостовой схемой, в одно из плеч которой включен датчик. Измеряемый параметр в виде напряжения разбаланса моста регистрируется измерительным прибором или фоторегистратором каротажной станции.

 

Е – источник тока; Rд – переключатель (1 – эталон; 2 – температура; 3 – дебитомер); ЦЖК – жила кабеля; ОК – его броня

Рис. 3. Принципиальная электрическая схема термодебитометра СТД.

 

Переход от приращений сопротивления к скорости движения жидкости (газа) осуществляют по эталонной кривой, получаемой в результате эталонирования прибора, т. е. измерения его показаний при различных скоростях потока в трубе того же диаметра, что и диаметр обсадной колонны.

Сопротивление датчика помещают в металлическую трубку диаметром 8 мм и длиной 300 мм; для уменьшения постоянной времени свободное пространство в трубке заливают металлическим сплавом с температурой плавления 80–130 °С.

Исследования дебитомерами, как правило, проводят в действующих скважинах. Лишь при необходимости установления межпластовых перетоков иногда исследуют остановленные скважины.

Исследования могут проводиться при непрерывном движении прибора в скважине либо «по точкам», т. е. на отдельных глубинах при неподвижном приборе. При обработке результатов, используя данные эталонировки прибора, от импульсов в минуту переходят к абсолютным величинам – дебиту в кубических метрах в сутки.

Полученная кривая, показывающая количество (долю) жидкости, проходящей через сечение скважины на различных глубинах, называется интегральной дебитограммой (Рис. 4, а, кривая 1). Она показывает суммарный дебит всех пластов, расположенных ниже данной глубины. В интервалах притока на такой дебитограмме наблюдается рост показаний, а в интервалах поглощения – их уменьшение. Приращение показаний в определенном интервале пропорционально количеству жидкости, отдаваемой (поглощаемой) этим интервалом. Так, на Рис. 4 притоки жидкости наблюдаются в четырех интервалах, отмеченных стрелками, причем наибольшая часть притока (7 м3/сут, или около 40%) связана с верхним интервалом (1529–1539 м). Далее по интегральной дебитограмме строят дифференциальную дебитограмму (см. Рис. 4, а, кривая 2), показывающую интенсивность притока (поглощения) на единицу мощности пласта. Для получения абсцисс этой кривой приращения показаний на интегральной кривой делят на мощность интервала, в котором наблюдается соответствующее приращение.

 

1 – интегральная дебитограмма; 2 – дифференциальная дебитограмма

Рис. 4. Примеры дебитограмм, зарегистрированных турбинным (а) и термоэлектрическим (б) дебитомерами.

 

На Рис. 4, б изображена схематическая дебитограмма, полученная термодебитомером. При переходе через интервал, на котором в скважину поступает жидкость, следовательно, изменяется скорость движения потока, за счет изменения теплообмена изменяется сопротивление чувствительного элемента. По этому изменению и выделяют отдающий интервал. Вследствие более сильного влияния потока жидкости, перпендикулярного к оси прибора (радиального потока), по сравнению с потоком вдоль оси скважины в кровле отдающих жидкость интервалов (но не всегда) наблюдается минимум, выше которого отмечается некоторый рост показаний. Подошва интервала поступления жидкости в скважину отмечается по началу спада кривой (при движении прибора снизу вверх), а кровля – по минимуму или (при его отсутствии) по точке перегиба кривой. Количественное определение дебита проводят по разнице δТ между показаниями Δ Т ниже интервала и выше интервала притока (после прохождения указанного выше переходного участка непосредственно после минимума). Переход от значений δТ к дебиту осущестляют по градуировочной кривой. Поскольку теплопроводность нефти, газа и воды различна, приращение сопротивления для трех сред при одной и той же скорости потока различна. Поэтому эталонировочная кривая должна быть получена для каждой из этих сред. Из-за различия теплопроводности сред термодебитомер показывает изменение показаний при переходе через раздел вода – нефть или вода – газ. Аналогично производят построение интегрального и дифференциального профилей по данным механической расходометрии. Интегральный профиль притока может быть описан формулой:


 

где h к h п – глубины залегания кровли и подошвы исследуемого работающего интервала, qz – удельный расход. Если движение флюида происходит вниз по стволу, то получаемый профиль расхода будет являться уже профилем приемистости. Зависимость расхода флюида от глубины описывается выражением

 

 

дифференцирование которого дает профили расхода отдельных интервалов. Для i -го объекта дифференциальный профиль может быть построен по удельным расходам дг:

 

 

где , расходы в верхней и нижней точках изучаемого интервала глубин  (Рис. 5).

 

Рис. 5.Профиль притока по расходометрии [по А.И. Ипатову, М.И. Кременецкому].




Поделиться:


Последнее изменение этой страницы: 2019-10-31; просмотров: 129; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.119.129 (0.01 с.)