Сущность физиологии упражнений и спорта. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Сущность физиологии упражнений и спорта.



Исторический материал.

 

Может показаться, что современные ученые, работающие в области физиологии упражнений, формулируют новые идеи, никогда прежде не применявшиеся в "окостенелой" науке. Это не так. Информация, собранная по крупицам, позволила разрешить проблему мышечного движения. Довольно часто идеи и теории современных исследователей в области физиологии формировались на основании гипотез ученых, чьи имена давно забыты.
То, что считается оригинальным или новым, довольно часто оказывается ассимиляцией предыдущих открытий или использованием данных других наук для решения проблем физиологии упражнений. Чтобы помочь разобраться в этом, рассмотрим кратко историю развития физиологии упражнений и вспомним тех людей, которые ее создавали.

Начала анатомии и физиологии

Хотя начало исследованиям функций человеческого тела положили древние греки, только к 1500 году был сделан действительно значительный вклад в понимание, как структуры, так и функций организма человека.

Предшественницей физиологии была анатомия. Работа Андреаса Безалия – "Структура человеческого тела", опубликованная в 1543 году, явилась поворотным пунктом в развитии науки о человеке и изменила направление последующих исследований. Хотя главное внимание в ней было обращено на анатомическое описание различных органов, предпринимались также попытки объяснить их функции.

Британский историк Майкл Фостер заметил: "Эта книга положила начало не только современной анатомии, но и современной физиологии. Она навсегда положила конец представлениям, царившим в течение 14 столетий, и способствовала действительному возрождению медицины".

Большинство ранних попыток объяснить физиологические аспекты были либо неверными, либо настолько туманными, что их можно было рассматривать лишь как предположения.

Например, попытки объяснить, как мышцы производят силу, сводились, как правило, к описанию изменений их размеров и формы во время сокращения, поскольку наблюдения ограничивались лишь тем, что можно было видеть невооруженным глазом. На основании подобных наблюдений Херо-нимус Фабрициус (около 1574 г.) выдвинул предположение, что сократительная мощность мышцы находится в ее волокнистых сухожилиях, а не в "мясистой части".

Анатомам не удавалось обнаружить существование индивидуальных мышечных волокон до тех пор, пока голландский ученый Антони ван Левенгук не изобрел микроскоп (около 1660 г.). Однако то, как эти волокна сокращаются и производят силу, оставалось загадкой до середины нашего столетия, когда появилась возможность изучать сложнейшую деятельность мышечных белков с помощью электронного микроскопа.

 

Долговременная физиологическая адаптация к тренировочным нагрузкам.

 

При изучении срочной адаптации на физическую нагрузку нас интересует немедленная реакция организма на отдельный цикл нагрузки.

Другой основной сферой интереса в области физиологии физических нагрузок и спорта является реакция организма в течение определенного периода времени на повторяющиеся циклы нагрузок.

Если вы регулярно занимаетесь физической деятельностью на протяжении недель, ваш организм адаптируется. Физиологическая адаптация вследствие постоянных физических нагрузок повышает способность выполнять физическую нагрузку, а также эффективность выполнения. При силовых тренировках увеличивается сила мышц, при аэробных повышается эффективность функционирования сердца и легких, а также увеличивается выносливость организма. Эти адаптации специфичны для различных типов тренировочных нагрузок.

 

Силовая тренировка.

Силовая тренировка направлена на увеличение силы, мощности и мышечной выносливости. Планируя силовые тренировочные нагрузки, необходимо, в первую очередь, определить, какие мышечные группы вы хотите тренировать, а затем подобрать соответствующие упражнения.

Интервальная тренировка.

В интервальной тренировке короткие или средние периоды работы чередуются с такими же периодами отдыха или пониженной активности. В основу интервальной тренировки заложен четкий физиологический принцип. Ученые установили, что спортсмены могут выполнять значительно больший объем работы, разбивая ее на короткие интенсивные циклы с периодами отдыха или пониженной деятельности между последовательными циклами работы. Интервальная тренировка применима практически в каждом виде спорта, чаще всего ее используют для подготовки бегунов и пловцов. Принципы интервальной тренировки можно адаптировать к другим видам деятельности, выбрав форму или режим нагрузки и изменяя основные переменные в зависимости от вида спорта и индивидуальных особенностей спортсмена. Под каждого спортсмена "подогнать":

- количество повторений и циклов на каждом тренировочном занятии;

- продолжительность интервала отдыха (восстановления);

- вид деятельности во время отдыха;

- количество тренировочных занятий в неделю.

Непрерывная тренировка.

Само название говорит о том, что этот вид тренировки подразумевает непрерывную деятельность без интервалов отдыха. Это может быть высокоинтенсивная непрерывная деятельность средней продолжительности или тренировочная нагрузка небольшой интенсивности в течение продолжительного периода времени. Рассмотрим оба вида.

- Высокоинтенсивная непрерывная тренировка.

Интенсивность работы при такой тренировке составляет 85-95% максимальной ЧСС спортсмена. Например, бегун на средние дистанции может пробежать 8 км (5 миль) со скоростью 3 мин/км(5 мин/миль) и средней ЧСС 180 ударов/мин (допустив, что ЧСС=200 ударам/мин).

Высокоинтенсивная непрерывная тренировка весьма эффективны для подготовки спортсменов, занимающихся видами спорта, требующими проявления выносливости, когда не выполняется большой объем работы.

Тренировка спортсмена с постоянной, близкой соревновательной интенсивностью, повышает способность поддерживать одинаковый темп во время забега. Как правило, ведет к улучшению результатов.

Регулярные нагрузки и забеги с интенсивностью повышают скорость ног, их силу и мышечную выносливость.

К сожалению, подобная тренировочная программа предъявляет спортсмену экстраординарные требования, особенно если она рассчитана на недели или месяцы. Рекомендуется периодически вводить варианты с более низкой интенсивностью (1 - 2 раза в неделю), чтобы дать спортсмену немного передохнуть после изнурительных, высокоинтенсивных непрерывных тренировок.

Продолжительная тренировка низкой интенсивности.

Этот вид тренировки стал исключительно популярным в конце 60-х годов текущего столетия. Спортсмен тренируется с относительно низкой интенсивностью, скажем 60-80% ЧСС. Частота сердечных сокращений редко превышает 160 ударов/мин у молодых спортсменов и 140 - у более зрелых.

Главная цель тренировки не скорость, а дистанция. Спортсмены, занимающиеся видами спорта, требующими проявления выносливости, могут пробегать 24-48 км каждый день, что составит за неделю 160-320 км (100-200 миль). Скорость бега при этом намного ниже максимальной скорости, которую может поддерживать спортсмен.

Этот метод тренировки значительно легче, чем метод высокоинтенсивной непрерывной тренировки, поскольку оказывает значительно меньшую нагрузку на сердечно-сосудистую и респираторную систему. Вместе с тем бег на большие дистанции может вызвать значительный дискомфорт в области мышц и суставов и приводить к травме.

Этот метод тренировки, по-видимому, чаще всего используется для развития выносливости:

- теми, кто хочет "быть в форме" с точки зрения состояния здоровья;

спортсменами, занимающимися командными видами спорта, которые используют тренировки на развитие выносливости только для общефизической подготовки;

- спортсменами, желающими сохранить высокий уровень выносливости между соревнованиями.

Для этих целей уровень интенсивности сохраняется в пределах 60-80% ЧСС, а дистанция сокращается. Например, бегуны могут сократить дистанцию до 5-8 км.

Следует отметить, что данный метод весьма эффективен для развития общей выносливости, поскольку позволяет выполнять работу с наиболее подходящей интенсивностью. Для людей среднего и старшего возраста, которые хотят достичь или сохранить приемлемый уровень физической подготовленности, этот метод наиболее подходящий и наименее опасный. Упражнения высокой интенсивности потенциально опасны для людей пожилого возраста. Этим людям также не рекомендуется заниматься спринтерскими или "взрывными" видами физической деятельности.

Тренировка фартлек.

Фартлек - игра со скоростью - представляет собой форму непрерывной нагрузки с намеком на интервальную тренировку.

Этот тренировочный метод был разработан в Швеции в 30-е годы XX столетия и используется преимущественно бегунами на длинные дистанции.

Продолжительность забега при таком виде тренировки составляет 45 мин и более. Спортсмен может, по желанию, изменять скорость от высокой скорости, до скорости бега трусцой. Это свободная форма тренировок, в которой главная цель не дистанция и время, а получение удовольствия. Тренировочные занятия обычно проводят в сельской местности, изобилующей множеством подъемов и спусков. Спортсмен сам выбирает как маршрут, так и скорость бега. Однако периодически скорость должна достигать высоких уровней. Многие тренеры используют фартлек, как дополнение к высокоинтенсивным непрерывным тренировочным нагрузкам или интервальной тренировочной программе для нарушения монотонности какого-либо одного их вида.

Круговая тренировка. При круговой тренировке спортсмен выполняет серию избранных упражнений в последовательности, называемой кругом. Круг обычно состоит из 6 - 10 тренажеров. На каждом тренажере спортсмен выполняет определенное упражнение, например, отжимание или сгибание рук, затем переходит на следующий тренажер.

Следует стремиться выполнить работу в круге как можно быстрее.

Показателем улучшения является выполнение всей работы за меньший отрезок времени или выполнение большего объема работы на каждом тренажере или и то, и другое.

Кроме того, поскольку спортсмен бегает между тренажерами, по мере увеличения расстояния между ними улучшается и деятельность сердечно-сосудистой системы.

При объединении круговой тренировки и традиционной силовой получаем круговую силовую тренировку. Традиционная силовая тренировка предполагает, как правило, медленное и методичное выполнение работы. Интервалы работы очень короткие, а периоды отдыха - продолжительные.
При круговой силовой тренировке работа обычно выполняется с интенсивностью порядка 40 - 60 % максимальной силы в течение 30-секундного интервала, период отдыха между рабочими интервалами - 15 секунд, хотя интервалы работы и отдыха можно видоизменять.

К примеру, на первом тренажере спортсмен выполняет за 30 секунд столько повторений, сколько может, затем отдыхает 15 секунд, переходя к другому тренажеру. Начинает следующий 30-секундный период работы.
Обычно за круг выполняют работу на 6 - 8 тренажерах. Рекомендуется выполнять 2 - 3 цикла.

Круговая силовая тренировка обеспечивает среднее увеличение аэробной выносливости и значительное увеличение силы, мышечной выносливости и гибкости. Кроме того, круговая силовая тренировка может значительно изменить состав тела, увеличив мышечную массу и снизив содержание жира в организме.

Методология исследований.

Рассмотрим исследования, которые позволят нам установить, как функционирует организм во время мышечной деятельности и как изменяется его функционирование вследствие тренировок.

Исследования могут проводиться как в лабораторных, так и в полевых условиях. Лабораторные исследования, как правило, отличаются большей степенью точности, поскольку можно использовать более специализированные приборы, а также более тщательно контролировать условия проведения тестов.

К примеру, непосредственное измерение максимального потребления кислорода (МПК) в лабораторных условиях позволяет наиболее точно оценить кардио-респираторную выносливость. Вместе с тем для оценки или определения ожидаемого МПК используют некоторые полевые тесты, например, бег на 2,4 км.

Полевой тест, не отличаясь абсолютной точностью, позволяет, тем не менее, достаточно точно оценить МПК. К тому же он не требует больших затрат на проведение и позволяет обследовать большое количество испытуемых за короткое время. Чтобы непосредственно определить МПК, необходимо пойти в университетскую лабораторию или в больницу, но также можно легко оценить МПК на основании результата бега на 2,4 км.

Иногда наиболее приемлем полевой тест. Например, во время первых исследований в области влияния аутоперфузии крови, когда у спортсмена брали пробу крови, некоторое время хранили ее и затем снова вводили в организм, все исследования проводились в лабораторных условиях. Полученные результаты отличались большой степенью точности вследствие тщательного контроля над условиями. Однако они не позволяли определить, улучшает ли аутоперфузия крови физическую деятельность. Только позднее, когда в исследовании сочетались лабораторные тесты с полевыми обследованиями во время настоящего бега, эта задача была решена.

Методы обследования.

- Единовременное обследование предполагает одноразовый сбор данных у различных групп населения и последующее их сравнение по группам.

- Длительное повторное обследование предполагает наблюдение за испытуемыми в течение продолжительного периода времени, а также сбор данных через определенные интервалы времени для выявления индивидуальных изменений. Метод позволяет получить более точную информацию, однако не всегда может быть применен. В таком случае метод единовременного обследования дает возможность получить некоторую информацию по интересующим вопросам.

- Исследования могут проводиться в лабораторных и полевых условиях. В лабораторных исследованиях обеспечивается тщательный контроль большинства переменных. Кроме того, используется наиболее совершенная и точная аппаратура. Исследования, проводимые в полевых условиях, не обеспечивают такой же контроль переменных и не позволяют использовать различную аппаратуру.

Вместе с тем, в полевых условиях, физическая деятельность испытуемых, как правило, более естественна, чем в лабораторных условиях.

Каждый метод имеет свои преимущества и недостатки, поэтому довольно часто в исследованиях сочетают оба метода, что позволяет получить более точную информацию.

Рассмотрев истоки физиологии упражнений и спорта можно сделать вывод, что современная информация в этих областях зиждется на старых знаниях и является своеобразным мостиком к будущим открытиям, поскольку на многие вопросы пока еще не получены ответы. Проблемы, занимающие ученых современности: срочные реакции на физические нагрузки и долговременную адаптацию к продолжительным тренировочным нагрузкам требуют дальнейшего изучения. Требуют развития основные принципы тренировки, а также различные типы тренировочных программ, методы исследований.

Сущность физиологии упражнений и спорта.


“Ничто так не истощает здоровье, как физическое бездействие” – сказал Аристотель.

Тело человека – удивительный механизм! В нем происходит бесконечное множество отлично координированных явлений. Они обеспечивают непрерывное осуществление сложных функций, таких, как зрение, дыхание, слух, обработка информации, без вашего сознательного усилия.

Если вы встанете, выйдете на улицу и начнете бегать трусцой вокруг жилого массива, в действие придут почти все системы вашего организма, позволяя легко перейти от состояния покоя к состоянию физической нагрузки. Если вы будете ежедневно заниматься, таким образом, и постепенно увеличивать продолжительность и интенсивность бега трусцой, ваш организм адаптируется и ваша работа станет более эффективной.

В течение столетий ученые изучали, как работает организм человека, как меняются функции или физиология организма во время занятий физической деятельностью и спортом.

В основе физиологии упражнений и спорта лежат анатомия и физиология. Анатомия изучает структуру и форму, или морфологию, организма. Она дает представление о строении различных частей тела и их взаимодействии. Физиология изучает функции организма: как работают системы органов, тканей, клеток, а также как интегрируются их функции с тем, чтобы регулировать среду организма. Поскольку физиология характеризует функции структур, нецелесообразно начинать ее изучение, не имея представления об анатомии. Физиология упражнений изучает изменения структур и функций организма под воздействием срочных и долговременных физических нагрузок. Спортивная физиология применяет концепции физиологии упражнений в процессе подготовки спортсменов, а также для улучшения их спортивной деятельности таким образом, спортивная физиология является производной физиологии упражнений.

Физиология упражнений развилась на базе материнской дисциплины – физиологии. Она изучает физиологическую адаптацию организма к стрессу срочной нагрузки при выполнении упражнения или занятий физической деятельностью и хроническому стрессу долговременной нагрузки при физической тренировке. Спортивная физиология выделилась из физиологии упражнений. Она использует данные физиологии упражнений для решения проблем спорта.

Рассмотрим пример, который поможет нам отличить друг от друга эти две тесно связанные отрасли физиологии. Благодаря исследованиям в области физиологии есть четкое представление о том, как наш организм получает энергию из продуктов питания, необходимую нашим мышцам, чтобы начать и поддерживать движение. Известно, что во время отдыха или при выполнении упражнения небольшой интенсивности главным источником энергии являются жиры и по мере увеличения интенсивности упражнения наш организм все больше использует углеводы до тех пор, пока они не становятся главным источником энергии. При продолжительной нагрузке высокой интенсивности запасы углеводов в нашем организме значительно сокращаются, что приводит к их истощению. Используя эту информацию и понимая, что наш организм имеет ограниченные запасы углеводов для производства энергии, спортивная физиология отыскивает пути:

- Увеличить способность организма накапливать углеводы (углеводная нагрузка).- Снизить интенсивность использования организмом углеводов во время мышечной деятельности (экономия углеводов);- Усовершенствовать рацион питания спортсменов до соревнований и во время соревнований и свести к минимуму риск истощения запасов углеводов.

Физиология спортивного питания, являющаяся подразделом спортивной физиологии, в настоящее время быстро развивается.

Исторический материал.

 

Может показаться, что современные ученые, работающие в области физиологии упражнений, формулируют новые идеи, никогда прежде не применявшиеся в "окостенелой" науке. Это не так. Информация, собранная по крупицам, позволила разрешить проблему мышечного движения. Довольно часто идеи и теории современных исследователей в области физиологии формировались на основании гипотез ученых, чьи имена давно забыты.
То, что считается оригинальным или новым, довольно часто оказывается ассимиляцией предыдущих открытий или использованием данных других наук для решения проблем физиологии упражнений. Чтобы помочь разобраться в этом, рассмотрим кратко историю развития физиологии упражнений и вспомним тех людей, которые ее создавали.

Начала анатомии и физиологии

Хотя начало исследованиям функций человеческого тела положили древние греки, только к 1500 году был сделан действительно значительный вклад в понимание, как структуры, так и функций организма человека.

Предшественницей физиологии была анатомия. Работа Андреаса Безалия – "Структура человеческого тела", опубликованная в 1543 году, явилась поворотным пунктом в развитии науки о человеке и изменила направление последующих исследований. Хотя главное внимание в ней было обращено на анатомическое описание различных органов, предпринимались также попытки объяснить их функции.

Британский историк Майкл Фостер заметил: "Эта книга положила начало не только современной анатомии, но и современной физиологии. Она навсегда положила конец представлениям, царившим в течение 14 столетий, и способствовала действительному возрождению медицины".

Большинство ранних попыток объяснить физиологические аспекты были либо неверными, либо настолько туманными, что их можно было рассматривать лишь как предположения.

Например, попытки объяснить, как мышцы производят силу, сводились, как правило, к описанию изменений их размеров и формы во время сокращения, поскольку наблюдения ограничивались лишь тем, что можно было видеть невооруженным глазом. На основании подобных наблюдений Херо-нимус Фабрициус (около 1574 г.) выдвинул предположение, что сократительная мощность мышцы находится в ее волокнистых сухожилиях, а не в "мясистой части".

Анатомам не удавалось обнаружить существование индивидуальных мышечных волокон до тех пор, пока голландский ученый Антони ван Левенгук не изобрел микроскоп (около 1660 г.). Однако то, как эти волокна сокращаются и производят силу, оставалось загадкой до середины нашего столетия, когда появилась возможность изучать сложнейшую деятельность мышечных белков с помощью электронного микроскопа.

 



Поделиться:


Последнее изменение этой страницы: 2020-03-02; просмотров: 282; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.60.166 (0.029 с.)