Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Определение конкурентоспособности с использованием функции желательности

Поиск

Использование функции желательности f для определения конкуренто-способности товара предложено Гончаровой Н.П.[9] Функция желательности определяется следующим образом:

, (9)

где е — основание натурального логарифма; х — приведенное значение исследуемого параметра объекта.

Функция определена в интервале 0...1 и используется в качестве безразмерной шкалы, названной шкалой желательности, для оценки уровней параметров сравниваемых объектов (изделий).

С помощью шкалы желательности оцениваются параметры объектов или изделий с точки зрения их пригодности к использованию, или желательности, по отношению к какому-либо практическому применению. Каждому фактическому значению функции желательности придается конкретный экономический смысл, связанный с уровнем конкурентоспособности исследуемого объекта или изделия. Причем значение функции желательности, равное 0, соответствует неприемлемому уровню параметра, при значении которого изделие непригодно для выполнения стоящих перед ним задач; значение функции желательности, равное 1,00, соответствует полностью приемлемому уровню параметра, либо такому значению параметра, при котором дальнейшее улучшение нецелесообразно или невозможно. Промежуточные значения функции желательности, их экономическая характеристика приведены в табл. 1.

Для выполнения дальнейших расчетов и графических построений необходимо получить значения приведенного параметра изделия, соответствующие узловым точкам шкалы желательности (табл. 1).

Из формулы, приведенной выше, определим нужное значение. С этой целью прологарифмируем обе части уравнения:

(10)

(11)

Повторное логарифмирование позволяет получить следующую зависимость:

x = –ln [–ln f ]. (12)

С целью обеспечения возможности использования функции желательности для оценки параметров различной размерности и порядка производится приведение параметров изделия р к значениям приведенного параметра x функции желательности f. Для этого по известным значениям x и р на границах интервалов функции желательности строится аппроксимирующая функция и определяются ее параметры (коэффициенты). Наиболее простая — это линейная функция вида

х = a х р + b, (13)

где a, b — коэффициенты аппроксимации.

 

Таблица 2. Параметры функции желательности

Процедура получения оценки уровня параметра изделия по шкале (функции) желательности f включает следующие этапы:

а) определение значений приведенного параметра х, соответствующих узловым точкам шкалы желательности f;

б) определение значений параметра p, соответствующих границам интервалов шкалы желательности f (согласно условиям (критериям), приведенным в табл. 1);

в) определение коэффициентов аппроксимации по данным х и р;

г) вычисление значения x для конкретного значения оцениваемого параметра p;

д) определение значения функции желательности f для оцениваемого параметра.

Очевидно, что результаты сравнительной оценки конкурентоспособности различных изделий-аналогов будут в значительной степени зависеть от того, какие конкретные значения на шкале параметров будут поставлены в соответствие границам интервалов шкалы желательности f. Если заранее неизвестны требования конкретных потребителей, данный метод рекомендует придерживаться следующих правил:

а) за f = 1,00 принимается уровень параметра, превышающий лучший мировой, или максимально возможный уровень, или уровень, улучшать который не имеет смысла;

б) за f = 0,80 принимается лучший мировой уровень, то есть наилучшее значение параметра среди всех рассматриваемых изделий;

в) за f = 0,20 принимается самый низкий уровень среди всех рассматриваемых изделий;

г) за f = 0,00 принимается наиболее низкий уровень значения исследуемого параметра изделия, который можно себе представить;

д) интервал на шкале параметров, соответствующий значениям функции желательности f = 0,20...0,80, следует разбить равномерно. При этом значения параметра p в точках, соответствующих значениям функции желательности 0,37 и 0,63, определяются из уравнения аппроксимации:

(14)

В качестве критериев оценки могут быть приняты как количественные, так и качественные измерители. В последнем случае оценки качественного параметра (например, имидж изделия или фирмы, его производящей) могут быть также сделаны в соответствии с рекомендациями, приведенными в табл. 1.

Имея оценки уровней отдельных параметров изделия, рассчитываем уровень конкурентоспособности всего изделия с помощью обобщенной функции желательности F:

, (15)

где f — значение функции желательности для i -го параметра изделия; n — количество анализируемых параметров изделия.

Сравнивая значение F различных изделий, определяем изделие, обладающее в данное время наилучшей совокупностью потребительских свойств. Этому изделию будет соответствовать наибольшее значение обобщенной функции желательности.

Данный метод страдает также рядом недостатков, а именно:

1) при расчете конкурентоспособности не учитывается различное влияние разных параметров на конкурентоспособность продукции;

2) для каждого из параметров предлагается определять только одну аппроксимирующую функцию. Это не всегда может обеспечить необходимую достоверность расчетов, особенно при использовании в качестве аппроксимирующей линейной функции. В данном случае предлагаем (если возможно получить значения р для всех узловых значений х) строить аппроксимирующую функцию по узловым точкам, ближайшим к значениям параметра изделия;

3) на наш взгляд, экономически необоснованно использование функции в качестве функции желательности. Очевидно, она была нужна по той причине, что принимает значения от 0 до 1, что для функции желательности предпочтительно.

Однако использование функции ведет к получению искаженного значения показателя конкурентоспособности.

Исследование функции показало, что данная функция является монотонно возрастающей на всей области определения: х Э (–Ч; +Ч), причем , т.е. ее значения лежат в интервале (0; 1).

Протабулируем данную функцию на отрезке [–4,0; 10,0] (расширять границы не имеет смысла, так как значения f (–4,0) и f (10,0) близки к предельным) с шагом 0,2. Кроме того, найдем приращение функции желательности на каждом шаге. По полученным значениям построим графики функции желательности и ее приращения (см. рисунок 1).

На рисунке 1 хорошо заметна неравномерность изменения функции желательности.

Для х Э[–1,8; 5,2] приращение функции составляет больше 0,001; для х Э[–1,4; 3,0] — больше 0,01, а для х Э[–0,6; 0,8] — больше 0,05. Для х Э[–1,8; 5,2] приращение незначительно и стремится к 0. Своего максимума изменения функция желательности достигает вблизи точки х =0. Таким образом, для объектов, у которых Х, т.е. приведенные значения параметра р, относительно близки к 0, различие значений функции желательности будет много больше, чем для объектов, у которых при той же разнице Х приведенные значения параметра отдалены от 0, что искажает действительность.

Рис. 1. Графики функции желательности и ее приращения



Поделиться:


Последнее изменение этой страницы: 2019-10-15; просмотров: 201; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.48.237 (0.01 с.)