Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Практическое применение жадного алгоритмаСодержание книги
Поиск на нашем сайте
На территории некого города N размещены заводы и магазины, в которые поставляется продукция с этих заводов. В результате разработки были определены возможные трассы для прокладки коммуникаций и оценена стоимость их создания для каждой трассы. Стоимость прокладки коммуникаций для трассы между заводом №1 и магазином удобрений составляет 15 у.е., между заводом №1 и заводом №3 – 85 у.е., между заводом №1 и хлебозаводом – 20 у.е. Между магазином №1 и заводом №2 составит 25 у.е., между магазином №1 и обувной фабрикой – 65 у.е. Стоимость прокладки коммуникаций для трассы, соединяющей хлебозавод и магазин №2 - 5 у.е., между хлебозаводом и кафе – 50 у.е., между заводом №2 и кафе - 20 у.е., между магазином №2 и продуктовым магазином - 20 у.е., между продуктовым магазином и обувной фабрикой - 25 у.е, между продуктовым магазином и кафе – 35 у.е., между обувной фабрикой и магазином №3 - 15 у.е, между обувной фабрикой и аптекой – 40 у.е., между кафе и аптекой - 10 у.е., между магазином №3 и торговым центром - 20 у.е., между аптекой и заводом №3 составит 30 у.е, между аптекой и торговым центром – 45 у.е., между заводом №3 и торговым центром, - 25 у.е. Необходимо, чтобы коммуникации связали все объекты, затраты на прокладку данных коммуникаций должны быть минимальны. Для удобства записи вводятся следующие обозначения: V1 – завод №1, V2 – магазин №1, V3 – хлебозавод, V4 –завод №2, V5 – магазин №2 V6 –продуктовый магазин, V7 – обувная фабрика, V8 –кафе, V9 – магазин №3, V10 – аптека, V11 –завод №3, V12 – торговый центр. Если создать графическую интерпретацию данной модели, то видно что получился граф с 12 вершинами и 18 ребрами. Рисунок 1– Графическая интерпретация задачи о оптимальной структуре сети
Из вышесказанного следует, что данную экономическую задачу можно решить с помощью теории графов. Требуется найти дерево покрытия минимального веса. Задача решается с помощью разновидности «жадного» алгоритма, алгоритма Краскала. Пусть имеется конечное множество Е, | E |=18, весовая функция w: E ®R+ и семейство ℇ⊂ 2Е. Требуется найти Х Î Е, такое что: Пусть Е – непустое конечное множество, w: E ®R+ - функция, ставящая в соответствие каждому элементу е этого множества неотрицательное действительное число w (e) – вес элемента е. Для Х Í Е вес w (Х) определим как сумму весов всех элементов множества Х:
где
Другими словами, необходимо выбрать в данном семействе непустое подмножество наименьшего веса. Сопоставим каждому пункту сети вершину графа G. А каждому ребру этого графа сопоставим число, равное стоимости строительства соответствующей коммуникации: (рисунок 1). Примером жадного алгоритма служит алгоритм Краскала /3/. Существует теорема, которая утверждает, что алгоритм Краскала всегда приводит к ребру, имеющему минимальный вес. Согласно алгоритму Краскала, выбирается ребро минимального веса. В данном случае это будет ребро е1 = {3,5}, получаем граф Т1. Строится граф Т2 = Т1 + е2, где е2 - ребро, имеющее минимальный вес среди ребер, не входящих в Т1 и не составляющий циклов с ребрами Т1, е2 {8,10}.
Т3 = Т2 + е3, где е3 = {7,9}. Т4 = Т3 + е4, где е4 = {1,2}. Т5 = Т4 + е5, где е5 = {1,3}. Т6 = Т5 + е6, где е6 = {5,6}. Т7 = Т6 + е7, где е7 = {4,8}. Т8 = Т7 + е8, где е8 = {9,12} Т9 = Т8 + е9, где е9 = {2,4}. Т10 = Т9 +е10, где е10 = {6,7}. Т11 = Т10 + е11, где е11 = {11,12}.
Найдено минимальное дерево покрытия взвешенного графа, следовательно, найдена и оптимальная структура сети, где общая стоимость затраченная на прокладку коммуникаций составит:
и это минимальная сумма затрат из всех возможных. При прокладке коммуникационной сети, соединяющей все данные пункты затрачивается 200 у.е. Рисунок 2 – Решение задачи о оптимальной структуре сети
Коммуникации проложат между следующими пунктами: аптека – кафе - завод №2 – магазин №1 - завод №1 – хлебозавод – магазин №2 - продуктовый магазин – обувная фабрика – магазин №3 – торговый центр.
|
||||
Последнее изменение этой страницы: 2019-10-15; просмотров: 184; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.118.7 (0.007 с.) |