Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Программируемые контроллеры Siemens SIMATIC S7Содержание книги
Поиск на нашем сайте
Программируемые контроллеры Siemens SIMATIC S7 широко используются в системах автоматизации пищевых производств, в том числе и в нашей области. Удобство и надежность конструкции, простота монтажа и эксплуатации, высокая производительность, мощные коммуникационные возможности, способность поддерживать обмен данными через Интернет, PROFIBUS, Industrial Ethernet и MPI делают технические устройства данной серии незаменимыми при решении задач автоматизации разных уровней сложности. А большой выбор модулей контроллеров Siemens SIMATIC S7 позволяет максимально адаптировать любую аппаратуру для решения любой производственной задачи. а) SIMATIC S7-200 Данный микроконтроллер применяется для управления и регулирования приборов в небольших системах автоматизации. Область использования контроллеров Siemens SIMATIC S7-200 весьма велика: они могут решать как простейшие задачи автоматизации (заменяя устаревшие контакторы или реле), так и задачи комплексной автоматизации. б) SIMATIC S7-300 Модульный контроллер стандартного исполнения для работы в нормальных промышленных условиях. Используется для создания систем автоматизации средней степени сложности. Системы на основе этого типа контроллера могут обслуживать от 16 до 65536 дискретных входов/выходов. SIMATIC S7-300 - это модульный программируемый контроллер, предназначенный для построения систем автоматизации низкой и средней степени сложности. Модульная конструкция, работа с естественным охлаждением, возможность применения структур локального и распределенного ввода-вывода, широкие коммуникационные возможности, множество функций, поддерживаемых на уровне операционной системы, удобство эксплуатации и обслуживания обеспечивают возможность получения рентабельных решений для построения систем автоматического управления в различных областях промышленного производства. Эффективному применению контроллеров способствует возможность использования нескольких типов центральных процессоров различной производительности, наличие широкой гаммы модулей ввода-вывода дискретных и аналоговых сигналов, функциональных модулей и коммуникационных процессоров. Состав Контроллеры SIMATIC S7-300 имеют модульную конструкцию и могут включать в свой состав: – Модуль центрального процессора (CPU). В зависимости от степени сложности решаемой задачи в контроллерах могут быть использованы различные типы центральных процессоров, отличающихся производительностью, объемом памяти, наличием или отсутствием встроенных входов-выходов и специальных функций, количеством и видом встроенных коммуникационных интерфейсов и т.д. – Модули блоков питания (PS), обеспечивающие возможность питания контроллера от сети переменного тока напряжением 120/230В или от источника постоянного тока напряжением 24/48/60/110В. – Сигнальные модули (SM), предназначенные для ввода-вывода дискретных и аналоговых сигналов с различными электрическими и временными параметрами. – Коммуникационные процессоры (CP) для подключения к сетям PROFIBUS, Industrial Ethernet, AS-Interface или организации связи по PtP (point to point) интерфейсу. – Функциональные модули (FM), способные самостоятельно решать задачи автоматического регулирования, позиционирования, обработки сигналов. Функциональные модули снабжены встроенным микропроцессором и способны выполнять возложенные на них функции даже в случае отказа центрального процессора ПЛК. – Интерфейсные модули (IM), обеспечивающие возможность подключения к базовому блоку (стойка с CPU) стоек расширения ввода-вывода. Контроллеры SIMATIC S7-300 позволяют использовать в своем составе до 32 сигнальных и функциональных модулей, а также коммуникационных процессоров, распределенных по 4 монтажным стойкам. Все модули работают с естественным охлаждением. в) SIMATIC S 7-400 Это универсальный модульный контроллер, который применяется в системах автоматизации средней и высокой степени сложности. Самый мощный из программируемых контроллеров семейства SIMATIC – может обслуживать до 131072 дискретных входов/выходов. Обладает высокой устойчивостью к вибрационным и ударным нагрузкам, отвечая самым жестким промышленным стандартам. Кроме того, установку или замену модулей Siemens SIMATIC S7-400 можно производить без отключения питания (так называемая «горячая замена»). Выбор датчиков В настоящее время на производстве в основном применяются аналоговые датчики с выходным унифицированным токовым сигналом на выходе 4 ¸ 20 мА. Преимущества стандарта 4 ¸ 20 мА перед другими способами подключения датчиков: двухпроводная схема подключения; не требуется калибровка датчика на контроллере; высокая степень защиты от наводок с силовых кабелей; контроль короткого замыкания и обрыва цепи. Датчик подключается напрямую к контроллеру, если контроллер имеет встроенный блок питания аналоговых датчиков или через внешний блок питания.
Для вновь проектируемых производств целесообразно применение «интеллектуальных датчиков» с HART протоколом. Для действующих реконструируемых и модернизируемых производств целесообразно планировать переход на «интеллектуальные датчики». Интеллектуальный датчик – это электронное устройство, основанное на объединении чувствительных элементов, схем преобразования сигналов и средств микропроцессорной техники. Такого рода датчики обладают способностью автоматической адаптации к источнику сигнала и изменяющимся условиям окружающей среды, а также способностью контролировать свои функции и корректировать ошибки измерений. Каталог датчиков Датчики давления При выборе датчиков следует учитывать величину измеряемого давления (различают абсолютное, избыточное и давление разрежения), а также агрессивность измеряемых сред. 1. Датчик давления Метран - 55 предназначен для измерения давления жидкости (в том числе агрессивных сред), пара, газа. Выпускают: а) датчик для измерения избыточного давления – Метран - 55 - ДИ (Метран-55-Ех-ДИ – взрывозащищенное исполнение). Верхний предел измерений: 0,1 МПа ÷ 100 МПа; б) датчик для измерения давления разрежения – Метран - 55 - ДВ (Метран-55-Ех-ДВ – взрывозащищенное исполнение). Пределы измерений: в) датчик для измерения абсолютного давления – Метран-55-ДА (Метран-55-Ех-ДА – взрывозащищенное исполнение). Верхний предел измерений: 2. Датчик давления Метран - 150 предназначен для измерения давления жидкости, пара, газа. Имеет взрывозащищенное исполнение. Выпускают: а) датчик для измерения избыточного давления – Метран - 150 CG (фланцевое исполнение), Метран-150 CGR (копланарное исполнение), верхний предел измерений: 0,025 кПа ÷ 10 МПа. Датчик для измерения избыточного давления – Метран - 150 ТG (рис. 28, а), Метран-150 ТGR (штуцерное исполнение), верхний предел измерений: 3,2 кПа ÷ 60 МПа; б) датчик для измерения абсолютного давления – Метран - 150 ТА (штуцерное исполнение), верхний предел измерений: 3,2 кПа ÷ 25 МПа, Метран-150 ТАR (штуцерное исполнение), верхний предел измерений: 1,6 МПа ÷ 68 МПа.
а) б) Рис. 28. Датчики фирмы Метран: а – датчик давления Метран - 150 TG; б – датчик уровня Метран - 150 L Датчики уровня При измерении необходимо учитывать агрессивность измеряемых сред, диапазон измерения и погрешность приборов. 1. Датчик для измерения гидростатического давления (уровня) жидкостей – Метран-150 – L (рис. 28, б). Имеет взрывозащищенное исполнение. Пределы измерений: 0,4 ÷ 25 м, Рдоп = 0,4 МПа. Измеряемая среда: нейтральные и агрессивные жидкости. 2. Преобразователь уровня – буйковый электрический УБ-ЭМ-1(простое исполнение), УБ-ЭМ-1-Ех (взрывозащищенное исполнение). Пределы измерений: 0,25 ÷ 10 м. Температура измеряемой среды -50 ÷ 450 °С, плотность среды 400 ÷ 2000кг /м3, допустимая основная погрешность ±0,24, ± 0,5%. 3. Радарный уровнемер для бесконтактного измерения уровня жидких, вязких, пастообразных и сыпучих сред – УЛМ-31 (простое исполнение), УЛМ-11 (взрывозащищенное исполнение). Пределы измерений: 0,6 ÷ 30 м. 4. Сигнализатор уровня РОС-101 предназначен для контроля уровня электропроводных и неэлектропроводных жидких, твердых (сыпучих) сред. Обеспечивает сигнализацию «наличия» или «отсутствия» контролируемой среды на установленном уровне. Имеет взрывозащищенное исполнение. Температура измеряемой среды до 1000С; рабочее давление до 2,5 МПа. Выходной сигнал дискретный. Датчики массы (веса) Тензодатчики фирмы «Тензо-М» с аналоговым выходом 4 ÷ 20 мА выпускаются балочного типа, мембранного, типа платформа. Область применения тензодатчиков балочного типа и типа платформа – платформенные весы, бункерные весы, взвешивание емкостей. Область применения тензодатчиков сжатия мембранного типа – для взвешивания емкостей, баков. Т2 – тензодатчик балочного типа из нержавеющей стали, диапазон нагрузки 20-200кг; Т4 – тензодатчик балочного типа из нержавеющей стали, диапазон нагрузки 30-1000кг; Т70А – тензодатчик датчик типа платформа, алюминиевый, верхний предел измерения 15, 30, 60, 100, 150кг; Т100А – тензодатчик датчик типа платформа, алюминиевый, верхний предел измерения 100, 150, 60, 300, 600кг; М50 – тензодатчик сжатия мембранного типа из нержавейки, верхний предел измерения 0.5, 1, 2, 3, 5тонн; Тензодатчики фирмы «Тензо-М» выпускаются в комплекте с силопередающим устройством.
Датчики расхода При выборе датчиков расхода необходимо учитывать характеристику измеряемой среды (агрессивность, температуру и т.д.) и трубопровода (диаметр условного прохода, наибольшее давление). Для учета суммарных значений расхода на линию применяют счетчики-расходомеры. 1. Датчик для измерения перепада давлений (расхода) – Метран-150 СD (фланцевое исполнение), Метран-150 CDR (копланарное исполнение). Имеет взрывозащищенное исполнение. Пределы измерений 0,025 кПа ÷ 10 МПа. Измеряемая среда: газ, жидкость, пар. Работает в комплекте с диафрагмой камерной стандартной – ДКС-Ру -dу, где Ру – условное давление в МПа, dу – условный диаметр трубопровода (50 ÷ 500 мм); либо с диафрагмой фланцевой камерной – ДФК-Ру -dу, где Ру – условное давление в МПа, dу – условный диаметр трубопровода (20 ÷ 40 мм); либо с диафрагмой бескамерной стандартной – ДБС-Ру -dу, где Ру – условное давление в МПа, dу – условный диаметр трубопровода (300 ÷ 1000 мм). 2. Расходомер кориолисовый Метран – 360 предназначен для измерения массового и объемного расхода (либо суммарного значения расхода) газа, жидкостей (в том числе агрессивных), эмульсий, суспензий, тяжелых и высоковязких сред. Диапазон измерений расхода 87 ¸ 43550 л/ч, наибольшее давление в трубопроводе 15,8 МПа. 3. Расходомер переменного перепада давлений Метран-350 с использованием осредняющей напорной трубки OHT Annubar предназначен для измерения расхода жидкости, газа, пара. Температура измеряемой среды от минус 184 °С до 677 °С, избыточное давление в трубопроводе до 25 МПа, условный диаметр трубопровода 12,5 ÷ 2400 мм. 4. Расходомер-счетчик электромагнитный «ВЗЛЕТ ЭР» предназначен для измерения объемного расхода (до 3056 м3/ч) электропроводящих жидкостей (наименьшая удельная проводимость рабочей жидкости 5∙10-4См/м) в том числе для горячей и холодной воды; dу от 10 до 300мм, наибольшее давление в трубопроводе 2,5МПа. Датчики температуры Для измерения температуры применяются датчики как с унифицированным токовым сигналом на выходе, так и без него. В случае применения датчиков без унифицированного токового сигнала на выходе в составе МПК необходимо предусматривать модули ввода сигналов низкого уровня, расшифровывающие сигналы с термопар и термометров сопротивления (рис. 29).
|
||||||
Последнее изменение этой страницы: 2019-11-02; просмотров: 203; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.166.186 (0.006 с.) |