Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
ФГБОУ Северо-Кавказский горно-металлургуческий институт↑ Стр 1 из 4Следующая ⇒ Содержание книги
Поиск на нашем сайте
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ Северо-Кавказский горно-металлургуческий институт (государственный технологический университет) Горно-Геологический факультет
Кафедра: «ПРИКЛАДНАЯ ГЕОЛОГИЯ»
РЕФЕРАТ По минералогии
Тема: « Арсенаты ».
Выполнил: студентка II -го курса Группы РМс-16-1 Гогаева Кристина Александровна Руководитель: Галушкина Евгения Юрьевна
Владикавказ 2018
В данном докладе изложена информация о минералогической группе: арсенаты, состоящая из геохимической и минералогической характеристик каждого минерала из этой группы. Арсенаты. Арсенаты — соли мышьяковой кислоты H3AsO4. По химическим свойствам напоминают фосфаты. В воде растворимы только арсенаты щелочных металлов и аммония. Кристаллические бесцветные вещества. Известны ортоарсенаты (M3AsO4, часто существуют в виде кислых или основных солей, например, KH2AsO4), пироарсенаты (или диарсенаты, M4As2O7, известны только для натрия, магния и бария), триарсенаты (M5As3O10, известны для натрия и калия), метаарсенаты (MAsO3, с полимерным анионом). Структурные аналоги фосфатов. Различные арсенаты в большей или меньшей степени ядовиты. Используются в основном для производства антисептиков и инсектицидов, а также красок, предохраняющих от гниения. Арсенат кобальта, представляющий собой розовый порошок, также используется в производстве керамики.
Распространение в природе. Среднее содержание Мышьяка в земной коре 1,7·10-4% (по массе), в таких количествах он присутствует в большинстве изверженных пород. Поскольку соединения Мышьяка летучи при высоких температурах, элемент не накапливается при магматических процессах; он концентрируется, осаждаясь из горячих глубинных вод (вместе с S, Se, Sb, Fe, Co, Ni, Cu и др. элементами). При извержении вулканов Мышьяк в виде своих летучих соединений попадает в атмосферу. Так как Мышьяк многовалентен, на его миграцию оказывает большое влияние окислительно-восстановительная среда. В окислительных условиях земной поверхности образуются арсенаты (As5+) и арсениты (As3+). Это редкие минералы, встречающиеся только на участках месторождений Мышьяка. Ещё реже встречается самородный Мышьяк и минералы As2+. Из многочисленных минералов на основе Мышьяка (около 180) основное промышленное значение имеет лишь арсенопирит FeAsS.Малые количества Мышьяка необходимы для жизни. Однако в районах месторождении Мышьяка и деятельности молодых вулканов почвы местами содержат до 1% М., с чем связаны болезни скота, гибель растительности. Накопление Мышьяка особенно характерно для ландшафтов степей и пустынь, в почвах которых Мышьяк малоподвижен. Во влажном климате Мышьяк легко вымывается из почв.В живом веществе в среднем 3·10-5% Мышьяка, в реках 3·10-7%. Мышьяка, приносимый реками в океан, сравнительно быстро осаждается. В морской воде лишь 1·10-7% Мышьяка, но зато в глинах и сланцах 6,6·10-4%. Осадочные железные руды, железомарганцевые конкреции часто обогащены Мышьяком.
Геохимия. Мышьяк известен человечеству с древнейших времён, когда использовались в качестве красителей минералы аурипигмент As2S3 и реальгар As4S4 (упоминания о них встречаются у Аристотеля). Алхимики при прокаливании сульфидов мышьяка на воздухе отмечали образование так называемого белого оксида As2O3: 2As2S3 + 9О2 = 2As2O3 + 6SO2↑. Этот оксид – сильный яд, он растворяется в воде и в вине. Впервые мышьяк в свободном виде получил немецкий алхимик Альберт фон Больштедт в 1250 г. прогреванием оксида мышьяка с углем: As2O3 + 3С = 2As + 3СО↑. Для изображения мышьяка использовали знак извивающейся змеи с раскрытой пастью. В 1789 году Антуан Лоран Лавуазье признал мышьяк самостоятельным химическим элементом. Название данного химического элемента в русском языке, возможно, произошло от слова "мышь". В Древней Руси возникновение такого названия могло быть связано с применением соединений мышьяка для истребления мышей и крыс. Греческое название Arsenikon происходит от персидского زرنيخ (zarnik) – «жёлтый аурипигмент». Латинское название элемента – Arsenicura, от греческого arsen – сильный, мощный. Элементарный As ограниченно используется в некоторых цветных сплавах, широко применяется в полупроводниковой промышленности как примесная добавка, для синтеза полупроводниковых соединений (арсениды галлия и индия). Малорастворимые халькогениды мышьяка склонны к стеклованию, их используют в качестве полупроводников, в оптических приборах (в частности, ночного видения), волоконных световодах в инфракрасном диапазоне, как пигменты для изготовления живописных красок, а оксиды - в оптическом стекловарении. Некоторые мышьякорганические соединения применяются как лекарственные препараты противомикробного действия, другие служат основой боевых отравляющих веществ (льюизит). В промышленности элементный мышьяк применяют для производства сплавов различного назначения. При добавлении мышьяка к сплавам на основе меди получают мышьяковые латуни и бронзы (в том числе зеркальную бронзу) и тугоплавкие сплавы. Сплавы на основе свинца с добавками мышьяка используются для изготовления аккумуляторных пластин, подшипников, защитной оболочки кабеля, а добавки мышьяка к свинцу применяются для повышения прочности дроби. Однако наибольшее применение находят соединения мышьяка. Растворимые в воде соединения мышьяка применяются в малых дозах в медицине - в стоматологии, для лечения кожных болезней и органов дыхания. Соединения мышьяка используются также в производстве стеклянных изделий, инсектицидов, для уничтожения грызунов, сорняков, при дублении кож и защите кожаных изделий, для обработки музейных экспонатов от порчи. 1. химические и физические свойства элемента, определяющие его миграцию. As, химический элемент V группы периодической системы Менделеева, атомный номер 33. Классификация В.М. Гольдшмидта сохранила свое значение и широко используется в большинстве геохимических работ, не смотря на то, что его гипотеза о строении Земли представляет лишь исторический интерес в плане развития науки. В.М. Гольдшмидт сравнил дифференциацию элементов в расплавленной планете с выплавкой металлов из руд, когда на дно металлургической печи опускается тяжелый металл с плотностью около 7, а на поверхность всплывает легкий силикатный шлак (аналог земной коры). Между ними располагается слой «штейна» - сульфида Fe с примесью сульфидов других металлов (аналог мантии). Распределение элементов по оболочкам, по Гольдшмидту, зависело от их атомных объемов [1], в классификации также учтено и строение атомов. По данной классификации все химические элементы можно разделить на четыре группы: сидерофильные (в ходе дифференциации образовавшие земное ядро), литофильные (образовывали земную кору и верхнюю мантию), халкофильные (сосредоточены в нижней мантии и образуют сульфидно-оксидную оболочку) и атмофильные (инертные газы). Мышьяк по классификации Гольдшмидта относится к халькофильным неметаллам. Мышьяк – серое с металлическим блеском хрупкое вещество (α-мышьяк). Плотность 5,74 кг/дм3. При нагревании до 600°C As сублимирует. При охлаждении паров возникает новая модификация – жёлтый мышьяк. Выше 270 °C все формы As переходят в α-мышьяк. Расплавить мышьяк можно только в запаянных ампулах под давлением. Температура плавления 817°C при давлении его насыщенных паров 3,6 МПа. Структура серого мышьяка похожа на структуру серой сурьмы и по строению напоминает черный фосфор. Мышьяк химически активен. При хранении на воздухе порошкообразный мышьяк воспламеняется с образованием кислотного оксида As2O3. Этот оксид в парах существует в виде димеров As4O6. При осторожном обезвоживании мышьяковой кислоты H3AsO4 получают высший кислотный оксид мышьяка As2O5, который при нагревании легко отдаёт кислород, превращаясь в As2O3. Оксиду As2O3 отвечают существующие только в растворах слабые кислоты – ортомышьяковистая H3AsO3 и метамышьяковистая HAsO2. Их соли – арсенаты. Разбавленная азотная кислота окисляет мышьяк до H3AsO3, концентрированная азотная кислота – до H3AsO4. Со щелочами мышьяк не реагирует, в воде растворяется. При нагревании мышьяка и водорода образуется арсин AsH3 – очень токсичный газ с запахом чеснока. С фтором и хлором мышьяк взаимодействует с самовоспламенением. При взаимодействии мышьяка с серой, селеном и теллуром образуются халькогениды: As2S5, As2S3, As4S4, As2Se3, As2Te3, существующие в стеклообразном состоянии. Они являются полупроводниками. Со многими металлами мышьяк образует арсениды. Арсенид галлия GaAs и индия InAs — полупроводники. Известно большое число органических соединений мышьяка, в которых имеется химическая связь As – C: органоарсины RnAsH3-n (n = 1,3), тетраорганодиарсины R2As – AsR2 и другие. Для мышьяка характерны газообразные соединения только в глубоких частях земной коры (гидротермальных, метаморфических и магматических системах). Мышьяк As5+, являясь анионогенным элементом, лучше мигрирует в щелочных водах. В природе известен один стабильный изотоп 75As. Нестабильные 70-74, 76-79, 81, искусственно созданные. Поперечное сечение захвата тепловых нейтронов 4,2.10-28 м-2. Конфигурация внешней электронной оболочки 4s24p3. Степени окисления –3, +3 и +5. Энергии ионизации при последовательном переходе от As0 к As5+ соответственно равны 9,815, 18,62, 28,34, 50,1, 62,6 эВ. Элементы, образующие в земной коре катионы, называются катионогенными, а образующие анионы – анионогенными. В зависимости от внешних условий мышьяк может быть и катионогенным и анионогенным, он является амфотерным элементом. В зависимости от отношения валентности к радиусу иона (по В.М. Гольдшмидту с дополнениями В.В. Щербины), т.е. по ионному потенциалу мышьяк относится к амфотерным окислам. С катионогенностью и анионогенностью связана электроотрицательность атомов, т.е. их способность при вступлении в соединения притягивать электроны. Электроотрицательность по Полингу 2,1. Некоторые авторы подчеркивают качественный характер понятия электроотрицательности, его внутреннюю противоречивость или даже физическую необосновательность, возожность ошибок при решении геохимических задач (П. Хендерсон) [1]. Окислительно-восстановительные процессы чрезвычайно характерны для земной коры, во многих системах они приобретают ведущее значение. Окислителями могут быть все элементы и ионы, способные принимать электроны, а восстановителями – отдавать их. Мышьяк может участвовать в окислительно-восстановительных реакциях земной коры как окислитель, так и восстановитель, но он не играет существенной роли. 2. кристаллохимические свойства. Структура кристаллической решётки мышьяка тригональная с периодом 4,130 Å. Атомный радиус 0,148 нм, ковалентный радиус 0,122 нм. Ионные радиусы (по Н.В. Белову и Г.Б. Бокию) As3+ 0,069 нм, As5+ 0,047 нм, As3- 0,119 нм. Мышьяк существует в нескольких аллотропических формах, из которых наиболее устойчив серый, так называемый металлический, с ромбоэдрической кристаллической решеткой, а=0,4135 нм, a=54,13°, z=2. При очень быстрой конденсации паров мышьяка на поверхности, охлаждаемой жидким N2, получают прозрачные, мягкие как воск кристаллы желтого мышьяка с кубической кристаллической решёткой с плотностью ~2,0 г/см3. По свойствам он аналогичен белому Р, но значительно менее устойчив. При нагревании и на свету желтый мышьяк быстро переходит в серый; энергия перехода 14,63 кДж/моль. Известны также нестабильные аморфные формы мышьяка, например черный мышьяк с плотностью ~4,7 г/см3, образующийся при конденсации паров мышьяка в токе Н2. Выше 270°С черный мышьяк переходит в серый; энергия перехода 4,18 кДж/моль. Компактный (плавленый) серый мышьяк имеет вид серебристого крупнокристаллического металла. Пар мышьяка бесцветен, состоит до 800°С из молекул As4, выше 1700°С из As2, в интервале 800-1700°С из смеси As2 и As4. Серый мышьяк очень хрупок, разрушается по спайностям; твердость по Бринеллю ~1500 МПа, твердость по Моосу 3,5. Мышьяк диамагнитен, обладает металлической проводимостью. 3. минералы. Мышьяк относится к рассеянным элементам, однако образует 177 собственных минералов, из них 90 образовались при высоких температурах и давлениях. Соединения мышьяка золотисто-желтого (аурипигмент) и темно-красного (реальгар) цветов. Редко встречается в самородном виде, часто содержится в свинцовых, медных и серебряных рудах, а также в большинстве минералов группы пирита и в сере. Наиболее распространенные минералы, имеющие промышленное значение, – арсенопирит FeAsS, реальгар As4S4 и аурипигмент As2S3. Практическое значение имеют мышьяковые руды, содержащие не менее 2-5% мышьяка. В богатых месторождениях содержание мышьяка в руде достигает 25-35%. Значительные количества мышьяка концентрируются в большинстве полиметаллических руд цветных металлов. Прежде всего он генетически ассоциируется с рудами W, Sn, Pb, Sb, Zn, Cu, Ni и Со. Почти со всеми этими металлами мышьяк образует минералы – простые и сложные арсениды, например, никелин NiAs2, смальтин CoAs2 и кобальтин CoAsS. Минералы мышьяка также встречаются в месторождениях благородных металлов – Аu и Ag. Самородный мышьяк образует скорлуповатые выделения, которые горняки иногда путали с серебряной рудой. Основную массу мышьяка и его соединений (более 90%) получают при переработке полиметаллических руд. Промышленные месторождения мышьяка в мире многочисленны, а запасы практически неограниченны. 4. кларки элемента в земной коре. Кларки As по А.П. Виноградову (1962 г.): твердой земной коры 1,7·10-4%, в ультраосновных породах – 5·10-5%, в основных породах - 2·10-4%, в средних породах – 2,4·10-4%, в кислых породах – 1,5·10-4%. Кларки As по А.А.Беусу (1975 г.): в гранитах – 1,5·10-4%, в гранодиоритах - 1,9·10-4%. Кларки As осадочных пород: в глинах и сланцах по А.П. Виноградову – 6,6·10-4%, в глинах по Турекьяну и Ведеполю – 1,3·10-4%, в сланцах по А.А. Беусу – 13,0·10-4%, в песчаниках по А.А. Беусу – 1,0·10-4%, в карбонатных породах по А.А. Беусу – 1,0·10-4%. Кларки As глубоководных осадков: в известковых осадках по Турекьяну и Ведеполю – 1,0·10-4%, в гинистых осадках по Турекьяну и Ведеполю – 1,3·10-3%. Месторождения мышьяковых руд относят к эндогенной серии, плутоногенному и вулканогенному классам гидротермальной группы. Соединения As встречаются в комплексе с цветными и благородными металлами - Cu, Zn, Pb, Au, Ag. Выделяют следующие типы руд: - мышьяковые (арсенопиритовые и реальгаро-аурипигментовые); - золотомышьяковые; - полиметаллически-мышьяковые; - медно-мышьяковые; - кобальт-мышьяковые; - оловянно-мышьяковые. Распространен (хотя встречается редко) в жильных месторождениях Рудных гор. Минимальное содержание элемента в породе для разработке 2%. Месторождения: Фрейберг, Шнеберг, Аннаберг, Мари-енберг, Иоганнгеоргенштадт (ГДР); Санкт-Андреас-берг в Гарце, Виттихен в Шварцвальде (ФРГ); Пршибрам (ЧССР). Кларк мышьяка в живом веществе 6·10-6%, он важный биоэлемент, но при значительном превышении кларка является сильным ядом. Мышьяк – энергичный водный мигрант, его кларк в реках 3·10-6г/л. В окислительных условиях на участках месторождений образуются арсенаты (As5+) и арсениты (As3+). Мышьяк, поступающий со стоком в океан, сравнительно быстро осаждается и в морской воде лишь 1·10-6г/л As. 5. геохимический цикл миграции. роль и поведение элемента в различных природных процессах и системах. Мышьяк поливалентен, что влияет на его миграцию по средствам окружающих окислительно-восстановительных условий. Мышьяк является характерным элементом протокристаллизации (кристаллизации ультраосновных и основных пород). В связи с летучестью As не накапливается при магматических процессах, для него характерна миграция в гидротермах, из которых осаждаются сульфиды и сульфосоли, содержащие As, а также и арсениды, образующие гидротермальные руды As. Многие минералы гидротермальных руд богаты элементами-примесями, закономерности парагенных ассоциаций которых в значительной степени объясняются изоморфизмом. В сульфидах мышьяк (As5+) образует изоморфную пару с Ge4+. В природе существует больше 10 различных барьеров, которые способствуют накоплению элементов на их границах. Для мышьяка известно 3 таких барьера: два геохимических барьера (восстановительно-сероводородный, где перед барьером среда окислительная/глеевая, после - восстановительная сероводородная, и адсорбционный, где осаждение происходит малоактивных водах, например в торфах и глинах) и биологический барьер, гумусовый горизонт почв. Мышьяк энергичный водный мигрант, в природные воды мышьяк поступает из минеральных источников, районов мышьяковистого оруднения, а также из зон окисления пород полиметаллического, медно-кобальтового и вольфрамового типов. Некоторое количество мышьяка поступает из почв, а также в результате разложения растительных и животных организмов. Потребление мышьяка водными организмами является одной из причин понижения концентрации его в воде, наиболее отчетливо проявляющегося в период интенсивного развития планктона. Наличие воды позволяет мышьяку мигрировать. Значительные количества мышьяка поступают в водные объекты со сточными водами обогатительных фабрик, отходами производства красителей, кожевенных заводов и предприятий, производящих пестициды, а также с сельскохозяйственных угодий, на которых применяются пестициды. В речных незагрязненных водах мышьяк находится обычно в микрограммовых концентрациях. В минеральных водах его концентрация может достигать нескольких миллиграммов в 1 дм3, в морских водах в среднем содержится 3 мкг/дм3. Поступая в морскую воду, быстро осаждается. В подземных водах - встречается в концентрациях 105 мкг/дм3. Мышьяк накапливается в некоторых железистых минералах (осадочные железные руды, железо-марганцевые конкреции часто обогащены As). Как элемент-примесь, мышьяк часто образует парагенетическую пару с халькопиритом. В геологической истории важным источником мышьяка для биосферы был вулканизм. На рудных полях месторождений мышьяка, в районах молодого вулканизма почвы местами сильно обогащены As (до 1%). С этим связаны болезни скота, гибель растительности. Данные явления особенно характерны для степей и пустынь в почвах которых мышьяк малоподвижен. Во влажном климате мышьяк вымывается из почв. 6. поведение элемента в ноосфере. Технофильность мышьяка высокая – 2·108 (как у P, Ca). Мышьяк и все его соединения ядовиты, растворимые в воде и слабокислых средах (например, желудочный сок). Соединения As3+ более ядовиты, чем соединения As5+. Из неорганических соединений особенно опасны As2O3 и AsH3. При остром отравлении мышьяком наблюдаются рвота, боли в животе, понос, угнетение центральной нервной системы. Сходство симптомов отравления мышьяком с симптомами холеры длительное время позволяло успешно использовать соединения мышьяка (чаще всего, триоксид мышьяка) в качестве смертельного яда. Во Франции порошок триоксида мышьяка за высокую «эффективность» получил обиходное название «наследственный порошок» (фр. poudre de succession). В 1832 появилась надёжная качественная реакция на мышьяк – проба Марша, значительно повысившая эффективность раскрытия отравлений. Помощь и противоядия при отравлении мышьяком: приём водных растворов тиосульфата натрия Na2S2O3, промывание желудка, приём молока и творога; специфическое противоядие – унитиол. ПДК в воздухе для мышьяка 0,5мг/м3. При работе с мышьяком и его соединениями необходимы: полная герметизация аппаратуры, удаление пыли и газов интенсивной вентиляцией, соблюдение личной гигиены (противопылевая одежда, очки, перчатки, противогаз), частый медицинский контроль; к работе не допускаются женщины и подростки. Особая проблема состоит в удалении мышьяка из отходящих газов, технологических вод и побочных продуктов переработки руд и концентратов цветных и редких металлов и железа. Наиболее перспективен способ захоронения мышьяка путем перевода его в практически нерастворимые сульфидные стекла. Из-за высокой токсичности соединения мышьяка использовались Германией как отравляющие вещества в Первую мировую войну. Существует предположение, что соединениями мышьяка был отравлен Наполеон на острове Святой Елены. На территориях, где в почве и воде избыток мышьяка, он накапливается в щитовидной железе у людей и вызывает эндемический зоб. Мышьяк в малых дозах канцерогенен, его использование в качестве лекарства, «улучшающего кровь» (так называемый «белый мышьяк», например «Таблетки Бло с мышьяком», и др.) продолжалось до середины 1950-х гг., и внесло свой весомый вклад в развитие онкологических заболеваний. Недавно широкую огласку получила техногенная экологическая катастрофа на юге Индии – из-за повышенного отбора воды из водоносных горизонтов, мышьяк стал поступать в питьевую воду. Это вызвало токсическое и онкологическое поражение у десятков тысяч людей. Считалось, что «микродозы мышьяка, вводимые с осторожностью в растущий организм способствуют росту костей человека и животных в длину и толщину, в отдельных случаях рост костей может быть вызван микродозами мышьяка в период окончания роста». Считалось также, что при длительном потреблении небольших доз мышьяка у организма вырабатывается иммунитет: этот факт установлен как для людей, так и для животных. Известны случаи, когда привычные потребители мышьяка принимали сразу дозы, в несколько раз превышающие смертельную, и оставались здоровыми. Опыты на животных показали своеобразие этой привычки. Оказалось, что животное, привыкшее к мышьяку при его употреблении, быстро погибает, если значительно меньшая доза вводится в кровь или под кожу. Однако такое «привыкание» носит очень ограниченный характер, в отношении так называемой «острой токсичности», и не защищает от новообразований. В умеренных концентрациях мышьяк является важным биоэлементом. Результаты исследований показали, что мышьяк препятствует дупликации гена, который, в свою очередь, подавляет активность одного из ключевых ферментов - telomerase. Функция этого фермента - защита кончиков хромосом. Низкое содержание telomerase приводит к изменениям в кончиках хромосом, в результате чего возникают различные генетические нарушения. Подобные нарушения, с одной стороны, становятся возможной причиной развития рака здоровых клеток, а, с другой стороны, приводят к отмиранию клеток, уже пораженных раком. Мышьяк в форме неорганических препаратов смертелен в дозах 0,05-0,1 г, и тем не менее мышьяк присутствует во всех растительных и животных организмах. Морские растительные и животные организмы содержат в среднем стотысячные, а пресноводные и наземные - миллионные доли процента мышьяка. Микрочастицы мышьяка усваиваются и клетками человеческого организма и содержится в крови, тканях и органах; особенно много его в печени - от 2 до 12 мг на 1 кг веса. Ученые предполагают, что микродозы мышьяка повышают устойчивость организма к действию вредных микробов.
Классификация. Арсенаты меди (Cu).
Форма кристаллов короткопризматическая, толстотаблитчатая. Агрегаты -кристаллы. П. тр. Плавится, в закр. Тр. Выделяет воду, становится желто-зеленым. Поведение в кислотах растворяется. Дэна 2-2, 363.
Арсенаты висмута (Bi).
Арсенаты урана (U).
Зейнерит - Cu (UO 2)2 (AsO 4)2 · 12 H 2 O Цвет: желто-зеленый, изумрудно-зеленый. Блеск: стекловидный. Твердость: 2,5 Плотность: 3,47 Кристаллическая система: тетрагональная. Имя: Назван А. Вейсбахом в 1872 году в честь Густава Антона Зейнера (30 ноября 1828 года, Хемниц, Саксония, Германия - 17 октября 1907 года, Десден, Саксония, Германия), физик и инженер. Он был директором Школы шахт, Фрайберга, Саксонии, Германия, когда был описан минерал. Прозрачность: прозрачный. Спайность: совершенный по (001) и отличен от (100).
Арсенаты марганца (Mn).
Арсенаты железа (Fe).
Приложение. Арсенаты меди (Cu). Клиноклаз - Cu3 (AsO4) (OH)3
Конихальцит - CaCu(AsO4)(OH)
Корнваллит - Cu5 (AsO4)2 (OH)4
Эвхроит - Cu2(AsO4)(OH) · 3H2O
Оливенит - Cu2(AsO4)(OH) Дуфтит - PbCu(AsO4)(OH)
Карминит - PbFe2(AsO4)2(OH)2
Лудлокит – FePb4As10O22 Арсенаты висмута (Bi).
Миксит - BiCu6(AsO4)3(OH)6 · 3H2O Арсенаты урана (U).
Зейнерит - Cu (UO 2)2 (AsO 4)2 · 12 H 2 O Арсенаты марганца (Mn).
Аллактит - Mn7(AsO4)2(OH)8
Арсенаты железа (Fe).
Скородит - Fe(AsO4) · 2H2O
Список литературы.
1. Венецкий С.И. О редких и рассеянных. М., 1980 г. 2. Перельман А.И. Геохимия. М.: Высшая школа, 1989 г. 3. Энерглин У., Брили Л. Аналитическая геохимия. Л.: Недра, 1975 г. 4. https://www.mindat.org/ 5. http://www.mindat.ru/jm/ 6. http://megabook.ru/ 7. https://studfiles.net/
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ Северо-Кавказский горно-металлургуческий институт (государственный технологический университет) Горно-Геологический факультет
Кафедра: «ПРИКЛАДНАЯ ГЕОЛОГИЯ»
РЕФЕРАТ По минералогии
Тема: « Арсенаты ».
Выполнил: студентка II -го курса Группы РМс-16-1
|
||||||||||||||||||
Последнее изменение этой страницы: 2019-05-19; просмотров: 215; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.147.141 (0.011 с.) |