Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Глава 2. 1. Механизмы токсического действия

Поиск

Взаимодействие токсиканта или продуктов его превращения в организме со структурными элементами биосистем, лежащее в основе развивающегося токсического процесса, называется механизмом токсического действия. Взаимодействие осуществляется за счет физико-химических и химических реакции.

Токсический процесс, инициируемый физико-химическими реакциями, как правило, обусловлен растворением токсиканта в определенных средах (водной или липидной) клеток и тканей организма. При этом существенно изменяются физико-химические свойства среды-растворителя (рН, вязкость, электропроводность, сила межмолекулярных взаимодействий и т.д.). Особенность данного типа взаимодействия - отсутствие строгой зависимости качества развивающегося эффекта от химических свойств молекулы токсиканта. Таким образом, действуют на ткани все кислоты, щелочи, сильные окислители, некоторые органические растворители и лишенные специфической активности высокомолекулярные соединения.

Чаще в основе токсического действия лежат химические реакции токсиканта с определенным структурным элементом живой системы. Структурный компонент биологической системы, с которым вступает в химическое взаимодействие токсикант, называется его "рецептором" или "мишенью".

Механизмы токсического действия подавляющего большинства химических веществ в настоящее время неизвестны. В этой связи, очень многие описываемые ниже классы молекул и молекулярных комплексов, образующих организм, рассматриваются, по большей части, лишь как вероятные рецепторы (мишени) действия ядов. Рассмотрение их

в этом ракурсе правомочно, поскольку в основе действия некоторых хорошо изученных токсикантов лежит взаимодействие с представителями именно этих классов биомолекул.

I. Определение понятия "рецептор" в токсикологии

Понятие "рецептор" весьма емкое. Наиболее часто в биологии его используют в следующих смыслах:

1. Общее понятие. Рецепторы - это участки относительно специфического связывания на биосубстрате ксенобиотиков (или эндогенных молекул), при условии, что процесс связывания подчиняется закону действующих масс. В качестве рецепторов могут выступать целые молекулы белков, нуклеиновых кислот, полисахаридов, липидов или их фрагменты. В отношении фрагмента биомолекулы, которая непосредственно участвует в образовании комплекса с химическим веществом, часто используют термин - "рецепторная область". Например, рецептором оксида углерода в организме является молекула гемоглобина, а рецепторной областью - ион двухвалентного железа, заключенный в порфириновое кольцо гема.

2. Селективные рецепторы. По мере эволюционного усложнения организмов формируются специальные молекулярные комплексы - элементы биологических систем, обладающие высоким сродством к отдельным химическим веществам, выполняющим функции биорегуляторов (гормоны, нейромедиаторы и т.д.). Участки биологических систем, обладающие наивысшим сродством к отдельным специальным биорегуляторам, получили название "селективные рецепторы". Вещества, взаимодействующие с селективными рецепторами в соответствии с законом действующих масс, называются лигандами селективных рецепторов. Взаимодействие эндогенных лигандов с селективными рецепторами имеет особое значение для поддержания гомеостаза.

Многие селективные рецепторы состоят из нескольких субъединиц, из которых лишь часть имеет участки связывания лигандов. Нередко термин "рецептор" используют для обозначения только таких лиганд-связывающих субъединиц.

3. Постоянные рецепторы - это селективные рецепторы, строение и свойства которых кодируется с помощью специальных генов или постоянных генных комплексов. На уровне фенотипа изменение рецептора путем генной рекомбинации развивается чрезвычайно редко. Возникающие порой в ходе эволюции вследствие полигенетических трансформаций изменения аминокислотного состава белка, формирующего селективный рецептор, как правило, слабо сказывается на функциональных характеристиках последнего, его сродстве к эндогенным лигандам и ксенобиотикам.

К числу постоянных рецепторов относятся:

- рецепторы нейромедиаторов и гормонов. Как и другие селективные рецепторы, эти рецепторы способны избирательно взаимодействовать и с некоторыми ксенобиотиками (лекарствами, токсикантами). Ксенобиотики могут при этом выступать как в качестве агонистов, так и антагонистов эндогенных лигандов. В итоге активируется или подавляется некая биологическая функция, находящаяся под контролем данного рецепторного аппарата;

- энзимы - белковые структуры, селективно взаимодействующие с субстратами, превращение которых они катализируют. Энзимы также могут взаимодействовать с чужеродными веществами, которые в этом случае становятся либо ингибиторами, либо аллостерическими регуляторами их активности;

- транспортные протеины - избирательно связывают эндогенные лиганды определенного строения, осуществляя их депонирование или перенос через различные биологические барьеры. Токсиканты, взаимодействующие с транспортными протеинами, также выступают либо в качестве их ингибиторов, либо аллостерических регуляторов.

4. Рецепторы с изменяющейся структурой. В основном это антитела и антигенсвязывающие рецепторы Т-лимфоцитов. Рецепторы данного типа формируются в клетках предшественниках зрелых клеточных форм вследствие индуцированной внешними воздействиями рекомбинации 2 - 5 генов, контролирующих их синтез. Если рекомбинация осуществилась в процессе дифференциации клеток, то в зрелых элементах будут синтезироваться рецепторы только определенного строения. Таким способом формируются селективные рецепторы к конкретным лигандам, а пролиферация приводит к появлению целого клона клеток, содержащих эти рецепторы.

Как следует из приведенных определений, в биологии термин "рецептор" в основном используется для обозначения структур, принимающих непосредственное участие в восприятии и передаче биологических сигналов, и способных избирательно связывать помимо эндогенных лигандов (нейромедиаторов, гормонов, субстратов) некоторые чужеродные соединения.

В токсикологии (как и фармакологии) термином "рецептор" обозначают любой структурный элемент живой (биологической) системы, с которым вступает в химическое взаимодействие токсикант (лекарство). В таком прочтении это понятие ввел в химеобиологию в начале ХХ века Пауль Эрлих (1913).

Спектр энергетических характеристик рецептор-лигандного взаимодействия необыкновенно широк: от формирования слабых, легко разрушающихся связей, до образования необратимых комплексов (см. выше). Характер взаимодействия и структура сформировавшегося комплекса зависят не только от строения токсиканта, конформации рецептора, но и от свойств среды: рН, ионной силы и т.д. В соответствии с законом действующих масс, количество образовавшихся комплексов вещество-рецептор определяется энергией взаимодействия (сродством) и содержанием обоих компонентов реакции (вещества и рецептора к нему) в биологической системе.

Рецепторы могут быть "немыми" и активными. "Немой" рецептор - структурный компонент биологической системы, взаимодействие которого с веществом не приводит к формированию ответной реакции (например, связывание мышьяка белками, входящими в состав волос, ногтей). Активный рецептор - структурный компонент биологической системы, взаимодействие которого с токсикантом инициирует токсический процесс. Для того, чтобы избежать терминологических трудностей, для обозначения структурных элементов, взаимодействуя с которыми токсикант инициирует токсический процесс, вместо термина "рецептор", часто используют термин "структура-мишень".

Принимаются постулаты:

- токсическое действие вещества выражено тем сильнее, чем большее количество активных рецепторов (структур-мишеней) вступило во взаимодействие с токсикантом;

- токсичность вещества тем выше, чем меньшее его количество связывается с "немыми" рецепторами, чем эффективнее оно действует на активный рецептор (структуру-мишень), чем большее значение имеет рецептор и повреждаемая биологическая система для поддержания гомеостаза целостного организма.

Любая клетка, ткань, орган содержат огромное количество потенциальных рецепторов различных типов ("запускающих" различные биологические реакции), с которыми могут вступить во взаимодействие лиганды. С учетом вышесказанного, связывание лиганда (как эндогенного вещества, так и ксенобиотика) на рецепторе данного типа является избирательным лишь в определенном диапазоне концентраций. Увеличение концентрации лиганда в биосистеме приводит к расширению спектра типов рецепторов, с которыми он вступает во взаимодействие, а следовательно, изменению его биологической активности. Это также одно из фундаментальных положений токсикологии, доказанное многочисленными наблюдениями.

Мишенями (рецепторами) для токсического воздействия могут быть:

- структурные элементы межклеточного пространства;

- структурные элементы клеток организма;

- структурные элементы систем регуляции клеточной активности.

 

II. Действие токсиканта на элементы межклеточного пространства

Каждая клетка организма окружена водной средой - интерстициальной или межклеточной жидкостью. Для клеток крови межклеточной жидкостью является плазма крови. Основные свойства межклеточной жидкости: её электролитный состав и определенное осмотическое давление. Электролитный состав определяется главным образом содержанием ионов Na+, K+, Са2+, Cl-, HCO3- и др.; осмотическое давление - присутствием белков, других анионов и катионов. Межклеточная жидкость содержит многочисленные субстраты для клеточного обмена, продукты метаболизма клеток, молекулы-регуляторы клеточной активности.

Попав в межклеточную жидкость, токсикант может изменять её физико-химические свойства, вступать в химическое взаимодействие с её структурными элементами. Изменение свойств межклеточной жидкости немедленно приводит к реакции со стороны клеток. Возможны следующие механизмы токсического действия, обусловленные взаимодействием токсиканта с компонентами межклеточной жидкости:

1. Электролитные эффекты. Нарушение электролитного состава наблюдается при отравлении веществами, способными связывать ионы. Так, при интоксикациях фторидами (F-), некоторыми комплексообразователями (Na2ЭДТА, ДТПА и др.), другими токсикантами (этиленгликолем, метаболизируящим с образованием щавелевой кислоты), происходит связывание ионов кальция в крови и межклеточной жидкости, развивается острая гипокальциемия, сопровождающаяся нарушениями нервной деятельности, мышечного тонуса, свертывающей системы крови и т.д. Нарушение ионного баланса, в ряде случаев, может быть устранено введением в организм растворов электролитов.

2. рН-эффекты. Интоксикация рядом веществ, не смотря на высокую буферную емкость межклеточной жидкости, может сопровождаться существенным нарушением кислотно-основных свойств внутренней среды организма. Так, отравление метанолом приводит к накоплению в организме муравьиной кислоты, вызывающей тяжелый ацидоз. Изменение рН интерстициальной жидкости может быть также следствием вторичных токсических эффектов и развиваться вследствие нарушения процессов биоэнергетики, гемодинамики (метаболический ацидоз/алкалоз), внешнего дыхания (газовый ацидоз/алкалоз). В тяжелых случаях нормализовать рН можно, вводя пострадавшему буферные растворы.

3. Связывание и инактивация структурных элементов межклеточной жидкости и плазмы крови. В плазме крови содержатся структурные элементы, обладающие высокой биологической активностью, способные стать мишенью действия токсикантов. К их числу относятся, например, факторы свертывающей системы крови, гидролитические ферменты (эстеразы), разрушающие ксенобиотики и т.д. Следствием такого действия может стать не только интоксикация, но и аллобиоз. Например, угнетение активности три-о-крезилфосфатом (ТОКФ) карбоксилэстераз плазмы крови, разрушающих фосфорорганические соединеня (ФОС), приводит к существенному повышению токсичности последних.

4. Нарушение осмотического давления. Существенные нарушения осмотического давления крови и интерстициальной жидкости при интоксикациях, как правило, носят вторичный характер (нарушение функций печени, почек, токсический отек легких). Развивающийся эффект пагубным образом сказывается на функциональном состоянии клеток, органов и тканей всего организма.

 

III. Действие токсикантов на структурные элементы клеток

Структурными элементами клеток, с которыми взаимодействуют токсиканты, как правило, являются:

- белки;

- нуклеиновые кислоты;

- липидные элементы биомембран;

- селективные рецепторы эндогенных биорегуляторов (гормонов, нейромедиаторов и т.д.).

 

Взаимодействие токсикантов с белками.

Основные функции белков: транспортная, структурная, энзиматическая (белки - биологические катализаторы). Токсический эффект может развиваться при нарушении каждой из этих функций.

Нарушение свойств белков химическим веществом возможно различными способами, зависящими как от структуры токсиканта, так и от строения и функций белка. Возможны: денатурация белка, блокада его активных центров, связывание активаторов и молекул, стабилизирующих протеин, и т.д.

К числу веществ, денатурирующих белки, относятся крепкие щелочи, кислоты, окислители, ионы тяжелых металлов. В основе денатурации лежит повреждение внутрибелковых связей, поддерживающих вторичную, третичную структуру протеина. При этом наиболее часто токсиканты взаимодействуют с СООН-, NH-, OH-, SH-группами аминокислот, образующих белки. Многочисленные токсиканты, связывающиеся с SH-группами, называются тиоловыми ядами. К числу тиоловых ядов прежде всего следует отнести тяжелые металлы, такие как ртуть, мышьяк, сурьма, таллий, органические соединения этих металлов (метилртуть, люизит и т.д.). Другие металлы более активно взаимодействуют с карбоксильными группами (свинец, кадмий, никель, медь, марганец, кобальт).

Особое значение в токсикологии придают действию ксенобиотиков на энзимы.

 

Энзимы

Роль энзимов в обеспечении процессов жизнедеятельности огромна. Неудивительно, что вещества, модулирующие их активность, обладают высокой биологической активностью, порой являются высокотоксичными веществами.

Энзимы - это белки, выполняющие функции биологических катализаторов. Они ускоряют достижение состояния равновесия обратимых экзергических реакций, типа: АВ two-headed arrow А + В, путем снижения энергии активации субстратов. Высокая энергия активации многих экзергических реакций препятствует их протеканию в условиях температурного режима организма. Примером таковых является расщепление перекиси водорода. in vitro предварительное нагревание увеличивает кинетическую энергию молекул Н2О2, что и инициирует процесс, который, будучи экзотермическим, в дальнейшем сам поддерживает свое течение. В условиях организма связывание перекиси водорода энзимом пероксидазой приводит к снижению энергии активации, что обеспечивает прохождение реакции в условиях температуры тела.

Скорость каталитических превращений веществ в организме определяется специфической активностью энзимов, их содержанием в клетках и тканях, наличием субстратов и регуляторов активности в среде. При нормальных условиях интенсивность процессов поддерживается на определенном уровне. Регуляция осуществляется различными механизмами, среди которых основные - модуляция количества энзимов, их специфической активности, изменение биодоступности субстратов и т.д.

 



Поделиться:


Последнее изменение этой страницы: 2019-04-30; просмотров: 175; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.67.248 (0.01 с.)