Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Метаболизм МО: основные этапы, ферменты и коферменты, регуляция метаболизма. Аллостерический центр.Содержание книги
Поиск на нашем сайте
Вегетативная кл нуждается в притоке энергии. Энергию получает в процессе ОВ. Источник энергии-питат в-ва. В Кл эти в-ва петерпевают изменения в рез-те ферментативных реак-й,котор образ этапы определ метаболич путей. 3 этапа превращений: 1)питат в-ва расщепл на фрагменты (распад, катаболизм). 2)в рез-те амфиболизма (промежут обмена) эти фрагменты превращ в органич к-ты и фосфорные эфиры. 1), 2)-этапы переходят один в др. Многообр низкомолек соедин образ-ся при амфиболизме явл субстр-ом, из котор синтезир оснолвн компон Кл: АК, пуринов и пиримидинов основания, фосфорелир сахара, орган к-ты и др. 3)в дальнейшем из метаболитов строят полимеры макромолек из котор состоит Кл. 2),3)-этапы метаболизма, сост синтетич ветвь-анаболизм. Основн питат в-вами у бактер явл углеводы, котор представл собой субстраты метаболизма. Сначала расщепляются внекл макромолекулы, это осущ выделяемыми Кл ферментами. Расщепл на мономерн и димерн гр-в таком виде поглащ Кл. Затем продукты расщепл гексозы превращ в ПВК, котор заним ключев положен в промежут метаболизме,тк служ исходным соединением во многих процессах синтеза и распада. Для прохождения полноцен метаболич реак-ий необход ферменты, котор контрол в Кл хим превращ. За превращ одного в др метаболит, отвеч фермент. Ферменты-белки, свойства: способны распознавать определ метаб-ты, катализ их превращ, обеспеч регуляц катион акт-ти. Связывание опред субстрата с ферментн белком. Кажд фермент хар-ся субстратн специф-тью. Узнавание субстр ферментом происх в процессе связывания. Субстрат присоединяется в опред участке. Субстрат и фермент подходят как ключик к замку. Кроме каталитич центра у фермента есть второй связывающий участок-центр-регуляторный. Концентр метаб-ов,кот играют роль опред активн фермента, значит и скорость соотв певращ. Эффекторы по структуре не сходны с субстр ферментов, те они отличны от субстратов, поэтому говорят о аллостерич эффекторах, а центры ответственные за регуляц, наз аллостерич центр ферм. Активн фермента зависит от t, рн и др. Кроме фермент в связывании и переносе отдельн фрагментов субстр,участв низкомолекул соедин –коферм и прост гр. Коферм-сложн орган в-во небелк прир, кот легко отщепл от фермента. Бактер получ коферм извне в виде витаминов, котор добавл в питат среду. Т.о. основные пути метаболизма у бакт-превращ глюкозы в Ц.трикарб к-т и дых цепь. Окисл до СО2 и воды и выдел энерг. Основн часть энерг перевод в доступн для Кл форму,др ч запас в виде АТФ и может использ в реакц треб затраты энерг. Кл использ доступн пит в-ва стремится получить больше АТФ. Регул Кл метаб происх на 2х уровнях: 1)уровень синтеза ферментов. 2)уровень изменен их активности. 1)при этом одновреиенно регулир синтез многих ферментов, относях к одному пути. Цель обоспечен нужн соотнош между скоростью синтеза опред фермента и скор синтеза суммарн Кл белка. Ферм образ непрерывн вне завис от услов среды-конститутивные. Образов катабол ферм регул путём индукции. 2)репрессия,регул образов анабол фермента. Образование фермента репрессир, если конечн прод имеется в избытке. Сущ регуляция на уровне активного фермента. Если в питат среде есть 1-ин субстр,то в Кл образ фермент,необх для расщепл этого субстрата. Для синтеза ферм участв в кат субстр тред индукция. Образ фермента, кот треб в проц анаболизма (биосинт 20 АК) регул путем репрессии. Дыхание микроорганизмов, основные типы: нитратное, сульфатное, серное, курбонатное, фумаратное. Значение микроорганизмов в биогеохимических циклах превращения веществ в биосфере. Сульфатное дыхание. Сульфидообразования или десульфидообразования бактерии переносят Н субстрата на сульфат как конечный акцептор энергии веществ. Т.о. востанавление сульфата до сульфидов в этом процессе перенос электронов в нём участвует цитохром С энергия запасается в результате фосфорелирования в анаэробных условиях. Энеригя получается в результате окислительного фосфорелирования делает возможной ассимиляцию органических веществ. Организмы, ассимилирующие органические вещества в процессе окисления неорганического донора электронов называются хемолитогетеротрофы. Сульфат редукционной бактерии встречается в сероводородном им., где органические вещества подвергаются анаэробному разложению. Образовавшийся сероводород- конечный продукт сульфат дыхания. Сульфат редукционной бактерии облигатные анаэробы- нуждаются в анаэробных условиях. Почти все бактерии, грибы, зелёные растения используют в качестве источника серы сульфат. Серное дыхание. У некоторых бактерий, которые могут расти в присутствии элементов серы, используя её в начале акцептора водорода при анаэробном переносе электронов сера восстанавливается до H2S например: Desulgaromones acethoxedame в море окисляют этанол или ацетат до СО2 или Н2О окисление серы и полное окисление органических субстратов плюс эта бактерия обладает ферментами цикло ТКК, содержащей цитохром. Карбонатное дыхание или СН4 – образование при помощи метан образующих бактерий. Рот Methandarcina первоначально органические вещества через ряд промежуточных этапов збраживаются до ацетата СО2 и Н эти продукты метаболизма первоначальных и вторичных деструкторов используются металообразующими бактериями – строгие аэробы т.е. кислород убивает их у них католазы и других ферментов. Основным субстратов для образования метана- ацетат. Метанобразующие бактерии последнее звено в пищевой цепи. Вначале находятся полисахариды, белки, жиры в цепи участвуют бактерии сбраживающие целюлозу до сукцита пропината, бутерата, лактата, спиртов, СО2, Н. Ацетогенные бактерии, сбраживающие эти первичные продукты брожения до ацетата, формиата, СО2 и Н а эти вещества- субстраты для метан образующих бактерий. Бактерии находятся в тесном взаимодействии с бактериями выделяемые водород. Водород выделяемый бактериями и в растворимой среде сразу поглащается метанобразующими видами известно что высокое порциальное давление водорода подавляет метаболизм и рост многих бактерий, образующих водород. Метанобразующие бактерии способны активизировать водород и осуществлять его окисление связанные с восстановлением СО2 этот способ существования бактерий- хемоавтотрафильный. Здесь для получения энергии СО2 используется как акцептор водорода что ведёт к образованию метана. Метан образующие виды характеризуются как анаэробные автотрофные виды окисляющие водород 4Н2+СО2=СН4+2Н2О эта реакция сопровождается синтезом атф. Металобразующие бактерии синтезируют атф путём окислительного фосфорелирования в анаэробных условиях. Карбонатному дыханию способны ацетогенные бактерии- это анаэробные хемоавтотрофные аргонизмы, которые окисляют водород и получают температуру с помощью корбонатного дыхания. Синтез клеточного вещества идёт через ацитил коэнзил А и пируват. При таком синтезе ацетата СО2 восстанавливается через стадию форминагеза при участии тетрагидрофолиевой кислоты дометил FH4 в дальнейщем восстановление карбоксилирование ацетилкоэнзима А приводит к образованию пирувата из каторого синтезируются клеточные вещества. Бактерии способные к карбонатному дыханию при росте на среде с водородом и СО2 выделяют большое количество уксусной кислоты. Фумаратное дыхание или анаэробный дыхательный процесс. Дыхательный процесс представляет собой фосфорелирование с фумаратом в качестве канечного акцептора электронов. Окислительное фосфорелирование связано с образованием суксцината- продукт востановления фумарата. Фумарат акцептирует экетроны, каторые поставляются переносящими водород КО ферментами из этого следует он делает возможным окислительное фосфорелирование. Фумаратное дыхание распространено у хемоорганотрофных анаэробных бактерий добавление фумарата к питательной среде у бактерий быстрый рост и повышееный выход биомассы это говорит что фумарат способствует эфективной регенерации АТФ. Нитратное дыхание(дисимиляционная нитратредуктация). При нитратном дыхании нитрат в анаэробных условиях служит конечным акцептором водорода. Первоначально нитрат восстанавливается до нитрита. С помощью молибден содержащего фермента нитрат редуктазы. Денитрофецирующие бактерии обладающие способностью восстанавливать нитрат через нитрит до газаообразной закиси азота. В отсутствии кислорода нитрат- коненый донор азота. Способность получать энергию путём использования нитрата как конечного акцептора водорода с образованием молекулярного азота распространён у бактерий. Этот процесс денетрификации обнаружен у факультативных аэробов. Синтез ферментов необходим для денитрификации, происходит в анаэробных условиях в присутствии нитрата, кроме нитрата редуктазы участвуют в выработке энергии и связаны с дыхательной цепью. Денитрификация – биологический процесс в результате которого связанный азот преобразуется в свободный азот этот процесс имеет решающее значение для сохранения жизни на земле. В нормально аэрированных почвах нитрат- конечный продукт минирализации. А благодаря высокой растворимости в воде и слабой связанности почвы нитрат ионы накапливаются в морской воде а содержание молекул азота в атмосфере стало бы меньше в этом случае процессы роста растений и биомассы прикратились. 33.Основные типы броже-ния.Бр.- метаболический про-цесс при кот.регенерир-я АТФ,в процессе субстратного фосфолирир-я.Вызыв-я обли-гатными анаэробами и прои-сходит в строго анаэр-х ус-ловиях.В зав-ти от того какие прод-ы преоблад-т, различ-т:спиртовое,молочно-кислое, пропионово-кисл.,муравьино-кисл.,масляно-кисл.,уксусно-кисл. Спиртовое - процесс оки-сл-я УВ в рез-е кот.обр-ся эти-лов. спирт,CO2 и выдел-я эне-ргия.Гл-е продуценты этано-ла-дрожжи.Сбражив-е глюко-зы до этанола до CO2 дрожжи осущ-т по фруктозо-бис-фос-фатному пути. Превращение пирувата в этанол в 2 этапа: снач. Пируват декарбоксилир-я пируватдекарбоксилазой при уч-и тиамин-пирофосфата до ацет-альдегида, а затем ацетальдегид восст. –алкого-льдегидрогеназой в этанол. при участии NAD H2. Пере-носится при этом H2,кот.обр-ся при дегидрир-и триозофос-фата,т.е. ок-восст.баланс сох-ран. Биолог. смысл спиртов. брож.-обр-ся опред кол E,кот. запас-я в форме АТФ,а затем расход-я на все жизненно нео-бходим процессы. Аналог-й путь обр-я этанола и p.Sarcina. При брожении некот-и видами энтеробакт, клостридиями, он явл.побочным продуктом. Мо-лочно-кислое конечным про-дуктом явл. молочн. к-та и выр-ся молочно-килс. Бакт. (лактат-бакт),они не сод-т цитохромы и каталазы. Про-исх-т сбражив.сахара моло-ка/УВ раст, что широко исп-я в произв-е мол-кисл. прод-в. От хар-ра брож.мол-кисл.бакт. подраздел.: 1. гомоферментат-е-обр-е из сах. только молоч-ную к-ту; р.Lactobacillus и стрептококки. Катабализм гл-юкозы происх-т у них по фру-ктозо-бис-фосфатному пути, а H2 кот.отщепл. при дегедрир-и глицер-альдегид3фосфата перед-я на пируват.Сбраж-т сах с 5, 6-ю ат. С. Действ. О2 нейтр/угнет-е их развитие. Кол-во обр-я побочных прод-в зав-т от доступа О2.Обр-я эне-ргия для развит. в анаэр-х ус-ловиях. 2. гетероферм-е-мол к-ту, спирт, уксус. к-ту и СО2. р.Lactobacbacterium, стрепто-кокки. У них нет основных ферментов бис-фосфатного пути (альдолазы, триозофос-фатн.изомеразы). Превращ-е глюк. идет через глюкозо-6-фосфат, 6-фосфоглюконат, ри-булозо-5-фосфат,т.е.ацетил-фосфат восстан-я ч/з ацетил-коэнзим-А и ацетальдегид в этанол. Др-я перев-т ацетил-фосфатв уксусн.к-ту, избыток Н2 при этом перед-ся люкозе из кот. обр-ся маннитол. Гли-церальдегидн. фосф. ч/з пи-руватпревращ в лактат. 3фрук-тозы=>лактат+ацетат+СО2+маннитол.Фруктоза служит ак-цептором избыт-х восстан-х эвивалентов. Пропионово-кис-лое бакт.обит-т в рубце и ки-шеч-е жвачных жив-х.Они сбраж-т в анаэр-х услов. глю-козу, сахзу, лактозы, пептозы, лактат, малат. Б.облад. цито-хромами и каталазой. Расщепл-е гексоз по фрук-тозобисфосфатн.пути(р.Propionibacterium). Пропион. к-та обр-ся из молочной в рез-е реак.3СН3-СНОН-СООН = 2СН3СН2-СООН + СО2+Н2О. Восстановление лактата / пи-рувата до пропионата идет по метилмолониев-Соа-пути.В процессе обр-я пропионата 2группыСО2и Со-А перен-ся на предшествующий не осво-бождаясь.В эт. проц. уч-т 3 кофактора:биотин,Со-А,Со-фермент В12.У некот. класт-ридиевых обр-е пропионов. К-ты акрилолен-Со-А-путем, пром-й прод-т акрилолен-Со-А. Муравьино-кислое -наз.еще бр-е смеш-о типа,т.к. выр-т и др.к-ты. (сем.Enterobacteria-cea)–кишечная палочка). Им. цитохромы и каталазу. Энерг. получ-т при брож и Д. Эн-теробак. обит. в основн. в киш-е. При бр. кот выз-я фа-культат-и анаэробами обр. бо-льш. число разл-х соед.,особ. орг.к-ты. Разл-т 2 типа про-цессов,в зав-ти от прод-в: 1)бр.хар-е для киш. пал. обр. к-ты и не обр. бутандиол. Enterobacter осн.прод-т бутан-диол и как доп-е прод-ы-к-ты. Эти типы реак. разл.-я по реак. кот. св. с превращ-м пирува-та.Особ-ти 1 типа для киш-й пал.-ки хар-ы особ-ти:-рас-щепл-е пирувата с обр-м аце-тил-Со-А и формиата.;-разл-е формиата на СО2иН2;-восст-е ацетил-Со-А до этанола;отсут-е способ-ти обр-ть из пирувата ацетарин и 2,3-бутандиол;1-й этап происх.в анаэроб. усл.и кат-я формиат лиазой.2)В анаэр. усл.обр-я ряд к-т.Обр-е бутандиола св. с доп-м освоб-м СО2 и восст.ацетата,брожен. с выходом бутандиола прим-ся в пром-типри окис-и ацета-та О2 возд. обр-ся диаце-тил. Масляно-кислое кластри-дии, в почве,на воде. Сбраж-т этанол, ам.к-ты или др. в-ва. Накапл-ся разл-е побочн.прод-ы на 1 моль глюк. обр-ся 3 АТФ.По преоблад.тех или иных конечн. прод-в:-истино масл-кис.бр.(бр. Глюк.,крах.).-ацетоно-бутиловое.-бр. пекти-новых в-в. Энер-й мат-л-крах-мал,водораств-е углев.,орг.к-ты и спирты.В кач. Источ. N исп-т азотис. соед.ам.к-ты, амиач. Соли,атмосф. Аз.) Уксуно-кислое осущ. не спо-рообр. бакт. Ruminoccocus al-bus исп-т целлюлозу и ксилан как субстраты. Из пирувата обр-ся ацетат, м.б. обр-но 4 моля АТФ на 1 моль глюк.,но так. возм-но лишь если все возник-е восстан-е эквив-ты будут высвоб-ся в виде мол-о О2.Прир-е соед-я сост-е из С,Н,О,N сбраж-я анаэр-х усл-х с выд-м энерг., но не спос-ы сбраж-ся алифатич-е и ароматич. УВ, стероиды, ка-ратиноиды, терпены, порфи-рины. В аэр. усл. они полно-стью окис.,а в аэр-х усл. оч. стаб-ы это св.с1) сод-т только ат. С и Н при внутримол-м ра-сщепл.таких соед энерг. не выд-ся. 2)некот. м. окисл. то-лько с О2.Благод.эт. они долго сохр.в нефтяных месторож.
34 Ф м/оов. Ф – способ обр-ния АТФ, источник энерг-свет. Ф -третий спос регенерации АТФ у бактерий. Ф прокариоты – пурпурные, зеленые вод, цианобактер, прохлорофиты, галобакт.Доноры электронов Н2S и Н2 или орг соед.Ф у бактер нз бескислородным 6СО2 + 12Н2S = С6Н12О6 + 12S +6Н2Ов анаэробных усл и у строгих анаэробов. У факультативных аэробов Ф образ АТФ подавл О2, и АТФ созд в проц аэробн дых, но есть орг-мы, для кот хар-рен оксигенный Ф (прохлорофиты, цианобакт).Донор Н2 -вода и выдел на свету О2: 6СО2 + 6Н2О = С6Н12О6 + 6О2. Аноксигенный Ф: бактер спос поглощать солн энергию с отдачей ат Н2 для восстановительных процессов. Фототрофные-пурпурные и зеленые бакт.Исп-ют в проц Ф видимый и инфракр свет. Фотосинтетический аппарат пурпур бакт-на внутр мембр, т.е. телакоидах. Пигменты – бактериохлорофилл А и В и каратиноиды.У пурпур бактер-алифатич пигменты,поглащают свет в син и зелен участках спектра. Каратиноиды поглащ кванты света=>на хлорофилл. У зелен бактер Ф аппарат – хлоросома, где содерж пигменты хлорофилла С, D, Е, иногда А. Осн каратиноиды – арильные. Содерж пигментов>, чем < освещенность во время их роста. Яркий свет подавл образ мембр структур, кот содерж пигменты=>cинтез бактериохлорофилл и каратиноиды. Ф аппарат сост из: 1) светособир пигм, кот поглащ энерг света и передают ее в реакц центры. У пурпурн бакт они в мембр структ в виде комплексов с белками. У зелен бакт в хлоросомах. 2) Фотохим реакц центры – идет трансформация электромагнитн энерг в химическую. 3) фотосинт энерг трансп системы, сопряж с запас энерг в молек АТФ. Два компон реакц центра и энерг транспирац системы всегда локализ в клет мембр и сист внутрицитоплазм мембр. Оксигенный Ф: у цианобакт Ф аппарат – тилакоиды, кот параллельны ПМ. Тилакоидн мембр содерж хл А, В-каратин, аксокаратиноиды.Особ-ти цианобакт – налич фикобилисом на поверхн тилакоидов и сост из фикобилипротеинов. Поглащ ими энерг перед-ся на хлорофилл. У цианобактерий соотношение син и краснпигментов зависит от спектрального состава света, при зелен и син свете обр-ся в основном фикоэритрин, при красн – фикоцианин. У прохлорофитов хлорофилл А и В. Они содерж алициклические каратиноиды, в- каратин. Механизм Ф оксигенных бактер как у водор и высших растен. Локализац светособир пигментов: или в цитопл мембр и ее произв, в фикобилисомах, тилакоидных мембр. У некот цианобактер рода Oscilatoria м присутств факульт бескислородный тип Ф=>связывающ звено м/у оноксигенн и оксигенн Ф. Фототрофн пурпурн и зелен бактер обитают в анаэробных зонах водоема, мелководных прудах. Прохлорофиты – морские или пресноводные орг-мы. Ф бесхлорофилльного типа: у некот голофильных бактер.В основе-светозавис циклич превращения. Поглощение кванта света =>изменение конформации ретиноля, кот располаг-ся параллельно пл-ти мембран и белковым тяжам=>отщепл Н+ от шиффова основания, ч/з кот происходит связь м/у ретинолем и полипептидной цепью. Прото переходит во внеклет простр-во, а Н2 погл-ся из цитоплазмы=>возн градиент концентрации протонов,а включение в процесс Н+-АТФ-азы привод к синтезу АТФ. Ф- происходящее в кл-ке фототрофов преобразование солн энерг в биохим доступную энергию. Ф фосфорелирование и Ф восстановление пиридиннуклеотида – процессы, кот ведут к образованию первичных стабильных продуктов Ф. Отличия Ф фототрофных бактер и высш растен: 1)Н2О у фототрофов не донорН2=> О2не выдел2) бактер исп-ют в кач-ве донор Н+ не воду, а Н2S или орг в-ва.В основе Ф один и тот же процесс. Разные типы Ф отл-ся др от др природой донора Н+. Перв стабильными продуктами Ф явл-ся АТФ и НАДФ*Н2. Фиксац СО2 не обязат связ со свет реакц.Ф происходит в мембр и на их поверхн-ти, а фиксацСО2 в цитоплазме или строме хлоропластов.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 250; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.131.37.82 (0.01 с.) |