Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

III. Космический фон микроволнового излучения

Поиск

 

Астрономы прошлого без труда разобрались бы в истории, рассказанной в предыдущей главе. Даже декорации похожи: большие телескопы, исследующие ночное небо с горных вершин Калифорнии или Перу, или невооруженный наблюдатель в своей башне, который «частенько спать ложится после Медведицы»[15]. Кроме того, как я отмечал в предисловии, эта история рассказывалась уже много раз, причем часто с большими, чем здесь, подробностями.

Теперь мы обратимся к совершенно иному типу астрономии, к той истории, которую нельзя было бы рассказать еще десять лет назад[16]. Мы будем иметь дело не с наблюдениями света, испущенного в последние несколько сот миллионов лет галактиками, более или менее похожими на нашу, а с наблюдениями рассеянного фона радиоизлучения, оставшегося почти от самого начала Вселенной. Да и декорации стали другими: крыши университетских физических корпусов, шары-зонды или ракеты, летящие над земной атмосферой, поля северного Нью-Джерси.

В 1964 году лаборатория фирмы «Белл Телефон» стала обладательницей необычной радиоантенны, находившейся в Кроуфорд Хилле, Холмдел, Нью-Джерси. Антенна была построена для связи через спутник «Эхо», и 20-футовый рупорный отражатель со сверхнизким уровнем шума делал антенну многообещающим инструментом для радиоастрономии. Два радиоастронома, Арно А. Пензиас и Роберт В. Вилсон[17], решили использовать антенну для измерения интенсивности радиоволн, излучаемых нашей Галактикой на больших галактических широтах, т. е. вне плоскости Млечного Пути.

Измерения подобного рода чрезвычайно трудны. Радиоволны от нашей Галактики, как и от большинства астрономических источников, лучше всего могут быть описаны как некий сорт шума, очень похожий на «статические разряды», которые можно слышать по радиоприемнику во время грозы. Такой радиошум нелегко отличить от неизбежного электрического шума, производимого случайными движениями электронов внутри радиоантенного устройства и в усилительных цепях, или от радиошума, принимаемого антенной от земной атмосферы. Трудности не столь велики, если изучается относительно «маленький» источник радиошума вроде звезды или далекой галактики. В этом случае можно переключать луч антенны туда-сюда между источником и соседним участком пустого неба; любой ложный шум, идущий от антенного устройства, усилительных цепей или земной атмосферы, будет примерно одинаков независимо от того, направлена антенна на источник или на соседний участок неба, поэтому при сравнении показаний этот шум сократится. Однако Пензиас и Вилсон собирались измерить радиошум, идущий от нашей собственной Галактики, т. е. по существу, от самого неба. Поэтому было крайне важно определить любой электрический шум, который мог бы возникать внутри их приемной системы.

При предварительных испытаниях этой системы был обнаружен, на самом деле, несколько больший шум, чем ожидалось по расчетам, но казалось правдоподобным, что это разногласие связано с небольшим избытком шума в усилительных цепях. Чтобы избавиться от этих проблем, Пензиас и Вилсон использовали устройство, известное как «холодная нагрузка», — мощность, приходящая от антенны, сравнивается с мощностью, создаваемой искусственным источником, охлажденным жидким гелием при температуре около четырех градусов выше абсолютного нуля. Электрический шум в усилительных цепях должен быть одинаков в обоих случаях и поэтому уничтожается при сравнении, что позволяет непосредственно измерить мощность, идущую от антенны. Измеренная таким способом мощность сигнала от антенны будет содержать вклады только от антенного устройства, земной атмосферы и любого астрономического источника радиоволн.

 

Радиотелескоп в Холмделе.

Арно Пензиас (справа) и Роберт В. Вилсон сняты рядом с 20-футовой рупорной антенной, с помощью которой в 1964–1965 годах они обнаружили трехградусный фон космического микроволнового излучения. Этот телескоп находится в Холмделе, Нью-Джерси, месте, где расположены лаборатории фирмы «Белл Телефон» (фотография лаборатории «Белл Телефон»).

 

 

Пензиас и Вилсон ожидали, что антенное устройство будет давать очень небольшой электрический шум. Однако, чтобы проверить это предположение, они начали свои наблюдения на сравнительно коротких волнах — длиной 7,35 см, на которых радиошум от нашей Галактики должен был быть пренебрежимо мал. Естественно, какой-то радиошум ожидался на такой длине волны и от земной атмосферы, но этот шум должен иметь характерную зависимость от направления: он должен быть пропорционален толщине атмосферы в направлении, куда смотрит антенна, — немного меньше в направлении зенита, чуть больше в направлении горизонта. Ожидалось, что после вычитания атмосферного члена с характерной зависимостью от направления не останется никакого существенного сигнала от антенны, и это подтвердит, что электрический шум, производимый антенным устройством, на самом деле пренебрежимо мал. После этого можно будет начать изучение самой Галактики на больших длинах волн — около 21 см, где ожидалось, что радиошум будет иметь приемлемое значение. (Кстати говоря, радиоволны с длинами вроде 7,35 см или 21 см и вплоть до 1 м известны как микроволновое излучение. Такое название дано потому, что эти длины волн меньше, чем у тех ультракоротких волн, которые использовали в радарах в начале второй мировой войны.)

К своему удивлению, Пензиас и Вилсон обнаружили весной 1964 года, что они принимают на длине волны 7,35 см довольно заметное количество микроволнового шума, не зависящего от направления. Они нашли, что этот «статический фон» не меняется в зависимости от времени суток, а позднее обнаружили, что он не зависит от времени года. Создавалось впечатление, что он не может идти от нашей Галактики; если бы это было так, то большая галактика М 31 в Андромеде, во многих отношениях похожая на нашу, по-видимому, должна была бы также сильно излучать на волне 7,35 см, и этот микроволновой шум должен был бы уже наблюдаться. Кроме того, отсутствие каких-либо вариаций наблюдаемого микроволнового шума с направлением весьма серьезно указывало на то, что эти радиоволны, если они действительно существуют, приходят не от Млечного Пути, а от значительно большего объема Вселенной.

Ясно, что было необходимо снова проверить, не могла ли сама антенна производить больше электрического шума, чем ожидалось. В частности, было известно, что пара голубей угнездилась в рупоре антенны. Голуби были пойманы, отправлены по почте на принадлежащий лабораториям компании Белл участок в Виппани, выпущены на волю, вновь обнаружены несколькими днями спустя в антенне в Холмделе, снова пойманы и, наконец, утихомирены более решительными средствами. Однако во время аренды помещения голуби покрыли внутренность антенны тем, что Пензиас деликатно назвал «белым диэлектрическим веществом», и это вещество могло при комнатной температуре быть источником электрического шума. В начале 1965 года стало возможным демонтировать рупор антенны и вычистить всю грязь, но это, как и все другие попытки, дало очень малое уменьшение наблюдаемого уровня шума. Загадка оставалась: откуда приходил этот микроволновой шум?

Одна часть числовых данных, имевшихся в распоряжении Пензиаса и Вилсона, относилась к интенсивности наблюдавшегося радиошума. Для описания этой интенсивности они использовали язык радиоинженеров, который неожиданно оказался весьма уместным в данном случае. Любое тело при любой температуре выше абсолютного нуля всегда испускает радиошум, производимый тепловым движением электронов внутри тела. Внутри ящика с непрозрачными стенками интенсивность радиошума на любой заданной длине волны зависит только от температуры стенок: чем выше температура, тем интенсивнее фон. Поэтому интенсивность радиошума, наблюдаемого на определенной длине волны, можно описывать в терминах «эквивалентной температуры», т. е. температуры стенок ящика, внутри которого радиошум будет иметь наблюдаемую интенсивность. Конечно, радиотелескоп — не термометр; он измеряет интенсивность радиоволн, регистрируя слабенькие электрические токи, которые индуцируются волнами в антенном устройстве. Когда радиоастрономы говорят, что они наблюдают радиошум с такой-то и такой-то эквивалентной температурой, они подразумевают лишь то, что это есть температура непрозрачного ящика, внутри которого следует поместить антенну для того, чтобы получить наблюдаемую интенсивность радиошума. Находится ли антенна в таком ящике на самом деле или нет, это, конечно, другой вопрос.

(Чтобы предупредить возражения со стороны специалистов, я должен заметить, что радиоинженеры часто описывают интенсивность радиошума в терминах так называемой температуры антенны, которая слегка отличается от описанной выше эквивалентной температуры. Для тех длин волн и интенсивностей, которые наблюдали Пензиас и Вилсон, эти два определения практически совпадают.)

 

Внутри радиотелескопа в Холмделе.

Вы видите Пензиаса, простукивающего соединения 20-футовой рупорной антенны в Холмделе и наблюдающего за этим Вилсона. Это была одна из попыток устранить любой возможный источник электрического шума от антенного устройства, который мог бы давать вклад в трехградусный микроволновой фон, наблюдавшийся в 1964–1965 годах. Все подобные попытки привели лишь к очень небольшому уменьшению наблюдаемой интенсивности микроволнового шума, так что неизбежно пришлось прийти к выводу, что это микроволновое излучение действительно имеет астрономическое происхождение (фотография лабораторий «Белл Телефон»).

 

 

Пензиас и Вилсон нашли, что эквивалентная температура принимавшегося ими радиошума равнялась примерно 3,5 градусам выше абсолютного нуля по стоградусной шкале (или, более точно, между 2,5 и 4,5 градусами выше абсолютного нуля). Температура, измеренная по стоградусной шкале, но отнесенная к абсолютному нулю, а не к точке таяния льда, называется измеренной в градусах Кельвина. Таким образом, наблюдавшийся Пензиасом и Вилсоном радиошум мог быть описан как имевший эквивалентную температуру 3,5 градуса Кельвина, или, короче, 3,5 К. Это было значительно больше, чем ожидалось, но все же очень мало в абсолютных единицах, поэтому неудивительно, что Пензиас и Вилсон несколько поразмышляли над полученным результатом, прежде чем публиковать его. Со всей определенностью можно сказать, что в первый момент было совершенно неясно, что это — самое важное космологическое открытие после обнаружения красного смещения.

Смысл загадочного микроволнового шума скоро стал проясняться благодаря действиям «невидимой коллегии» астрофизиков. Случилось так, что Пензиас позвонил по совершенно другому поводу своему приятелю, радиоастроному Бернарду Берку из МТИ[18]. Совсем незадолго до этого Берк слышал от другого своего коллеги Кена Тернера из Института Карнеги о докладе, который Тернер, в свою очередь, слышал в Университете Джона Гопкинса и который сделал молодой теоретик из Принстона П.Дж. Е. Пиблз. В этом докладе Пиблз приводил аргументы в пользу того, что должен существовать фон радиошума, оставшийся от ранней Вселенной и имеющий сейчас эквивалентную температуру примерно 10 К. Берк уже знал, что Пензиас измерял температуру радиошума с помощью рупорной антенны, принадлежащей лабораториям компании Белл, поэтому он воспользовался телефонным разговором, чтобы спросить, как идут измерения. Пензиас ответил, что измерения идут превосходно, но в результатах есть что-то, чего он не может понять. Берк сообщил Пензиасу, что физики в Принстоне, возможно, имеют интересные идеи относительно того, что принимает антенна в Холмделе.

В своем докладе и препринте, написанном в марте 1965 года, Пиблз рассматривал излучение, которое должно было присутствовать в ранней Вселенной. Термин «излучение» имеет, конечно, общий смысл, объединяя электромагнитные волны всех длин — не только радиоволны, но и инфракрасный, видимый, ультрафиолетовый свет, рентгеновское излучение и излучение очень коротких длин волн, называемое гамма-излучением (см. табл. 2). Здесь нет резких границ; с изменением длины волны один тип излучения плавно переходит в другой. Пиблз заметил, что если бы в течение нескольких первых минут существования Вселенной не было интенсивного фона излучения, то ядерные реакции должны были бы происходить столь быстро, что большая доля имевшегося водорода «сварилась» бы в более тяжелые элементы. А это противоречит тому факту, что около трех четвертей сегодняшней Вселенной составляет водород. Этот процесс быстрого приготовления ядер мог быть предотвращен, только если Вселенная была заполнена излучением, имевшим чудовищную эквивалентную температуру на очень коротких длинах волн и которое могло бы разрывать ядра на части так же быстро, как они образовывались.

Мы увидим, что это излучение должно было выжить при последующем расширении Вселенной, но его эквивалентная температура должна была непрерывно падать в процессе расширения Вселенной обратно пропорционально ее размеру. (Как будет видно, это, по существу, есть эффект красного смещения, обсуждавшийся в главе II.) Отсюда следует, что теперешняя Вселенная также должна быть заполнена излучением, но с эквивалентной температурой значительно меньшей, чем та, которая была в первые несколько минут. Пиблз оценил, что для того, чтобы образование гелия и более тяжелых элементов в первые несколько минут сохранилось в известных границах, фон излучения должен был быть столь интенсивным, что его теперешняя температура должна составлять по меньшей мере 10 К.

Число 10 К было несколько завышено, и вскоре появились более тщательные и аккуратные вычисления Пиблза и других, которые будут обсуждаться в главе V. На самом деле, препринт Пиблза никогда не был опубликован в первоначальном виде. Но вывод был по существу правильным: из наблюдаемой распространенности водорода мы можем вывести, что в первые несколько минут Вселенная должна была быть заполнена мощным излучением, которое могло предотвратить образование слишком большого количества более тяжелых элементов; с тех пор расширение Вселенной должно было понизить эквивалентную температуру этого излучения до нескольких градусов Кельвина, так что оно проявляется сейчас как фон радиошума, идущий одинаково со всех направлений. Это сразу же естественным образом объяснило открытие Пензиаса и Вилсона. Таким образом, в определенном смысле антенна в Холмделе находится в ящике — этим ящиком является вся Вселенная. Однако эквивалентная температура, зафиксированная антенной, не есть температура сегодняшней Вселенной, а скорее ее очень давняя температура, которая уменьшилась пропорционально огромному расширению, испытанному Вселенной с тех пор.

Работа Пиблза была последней в длинной серии аналогичных космологических гипотез. В самом деле, в конце 40-х годов теория нуклеосинтеза, основанная на «большом взрыве», развивалась Георгием Гамовым и его сотрудниками Ральфом Альфером и Робертом Херманом, и в 1948 году Альфер и Херман использовали эту теорию для предсказания фона излучения с теперешней температурой около 5 К. Аналогичные вычисления были выполнены в 1964 году Я.Б.Зельдовичем в СССР и независимо Фредом Хойлом и Р.Дж. Тайлером в Великобритании. Эти более ранние работы поначалу не были известны группам ученых в лабораториях Белл и Принстоне и не оказали влияния на действительное открытие фона излучения, поэтому мы отложим детальное их рассмотрение до главы VI. Мы также перенесем в главу VI обсуждение загадочного исторического вопроса о том, почему ни одна из этих более ранних работ не привела к поискам космического микроволнового фона.

Вычисления Пиблза в 1965 году были инициированы идеями физика-экспериментатора из Принстона Роберта Дикке. (Среди прочего Дикке изобрел несколько важнейших микроволновых устройств, используемых радиоастрономами.) Где-то в 1964 году Дикке начал задумываться над тем, не должно ли быть какого-то наблюдаемого излучения, оставшегося от горячей плотной ранней стадии космической истории. Рассуждения Дикке основывались на «осциллирующей» теории Вселенной, к которой мы вернемся в последней главе этой книги. По-видимому, у него не было определенных ожиданий относительно температуры этого излучения, но он понимал самое главное, что было что-то, что стоило искать. Дикке предложил П.Г. Роллу и Д.Т. Уилкинсону начать поиски микроволнового фона излучения, и те стали сооружать маленькую низкошумящую антенну на крыше Пальмеровской физической лаборатории в Принстоне. (Для этой цели не обязательно использовать большие радиотелескопы, так как излучение идет со всех направлений; оттого что имеется более узко сфокусированный антенный луч, ничего не выигрывается.)

Прежде чем Дикке, Ролл и Уилкинсон смогли завершить свои измерения, Дикке имел телефонный разговор с Пензиасом, который только что услышал от Берка о работе Пиблза. Они решили опубликовать одновременно два письма в «Астрофизическом Журнале», в которых Пензиас и Вилсон сообщили бы о своих наблюдениях, а Дикке, Пиблз, Ролл и Уилкинсон изложили бы космологическую интерпретацию. Пензиас и Вилсон, все еще очень настороже, дали своей заметке скромное название «Измерение избыточной антенной температуры на частоте 4080 МГц». (Частота, на которую была настроена антенна, равнялась 4080 МГц, или 4080 миллионов колебаний в секунду, что соответствовало длине волны 7,35 см.) Они просто объявили, что «измерения эффективной зенитной температуры шума… дали значение на 3,5 К выше, чем ожидалось», и избежали всяких упоминаний о космологии, за исключением фразы, что «возможное объяснение наблюдаемой избыточной температуры шума дано Дикке, Пиблзом, Роллом и Уилкинсоном в сопутствующем письме в этом же выпуске журнала.

Действительно ли микроволновое излучение, обнаруженное Пензиасом и Вилсоном, осталось от начала Вселенной? Прежде чем мы перейдем к рассмотрению экспериментов, осуществленных после 1965 года для того, чтобы разрешить этот вопрос, нам необходимо сначала спросить себя, что мы ожидаем теоретически, то есть каковы общие свойства излучения, которое должно заполнять Вселенную, если сегодняшние космологические идеи правильны? Этот вопрос приводит нас к рассмотрению того, что происходит с излучением при расширении Вселенной — не только во время нуклеосинтеза, в конце первых трех минут, но и на протяжении эонов[19], прошедших с тех пор.

 

Радиоантенна в Принстоне.

Фотография первой установки в Принстоне, на которой получено доказательство существования фона космического излучения. Маленькая рупорная антенна водружена раструбом вверх на деревянную платформу. Уилкинсон стоит под антенной несколько справа: Ролл, почти заслоненный аппаратурой стоит прямо под антенной. Блестящий цилиндр с конической верхушкой является частью криогенного оборудования, использовавшегося для создания контрольного источника на жидком гелии, излучение которого могло сравниваться с излучением от неба. Этот эксперимент подтвердил существование фона излучения с температурой 3 К на длине волны более короткой, чем та, которую использовали Пензиас и Вилсон (фотография Принстонского университета).

 

 

Нам будет очень полезно отказаться сейчас от классической картины излучения в терминах электромагнитных волн, которую мы до сего момента использовали, и принять более современную «квантовую» точку зрения, согласно которой излучение состоит из частиц, известных как фотоны. Обычная световая волна содержит огромное количество фотонов, летящих вместе в одном направлении, но если бы мы очень точно измерили энергию, переносимую рядом волн, то обнаружили бы, что она всегда есть кратное определенной величины, которую называют энергией отдельного фотона. Как будет видно, энергия фотона, вообще говоря, довольно мала, так что в большинстве практических случаев кажется, будто электромагнитная волна может иметь какую угодно энергию. Однако взаимодействие излучения с атомами и атомными ядрами обычно происходит с отдельным фотоном в данный момент времени, и при изучении таких процессов необходимо предпочесть волновому описанию описание с помощью фотонов. Фотоны имеют нулевую массу и нулевой электрический заряд, но, тем не менее, они вполне реальны — каждый из них несет определенные энергию и импульс и даже определенным образом вращается вокруг своего направления движения[20].

Что происходит с отдельным фотоном, пока он путешествует сквозь Вселенную? Ничего особенного, если только подразумевается сегодняшняя Вселенная. Свет от объектов, удаленных чуть не на 10 миллиардов световых лет, по-видимому, прекрасно доходит до нас. Значит, какая бы материя ни присутствовала в межгалактическом пространстве, она должна быть достаточна прозрачна, чтобы фотоны смогли путешествовать в течение времени, составляющего значительную часть возраста Вселенной, не будучи рассеянными или поглощенными.

Однако красные смещения далеких галактик говорят нам, что Вселенная расширяется, так что ее составные части должны были быть когда-то более сжатыми, чем сейчас. Температура произвольной жидкости в общем случае растет, когда жидкость сжимается, поэтому мы можем также заключить, что вещество Вселенной было в прошлом много горячее. В действительности, мы полагаем, был период времени, который, как мы увидим, длился, вероятно, в течение первых 700 000 лет существования Вселенной, когда содержимое Вселенной было столь горячим и плотным, что не могло еще собраться в звезды и галактики, и даже атомы были все еще разбиты на составляющие их ядра и электроны.

В этих мало приятных условиях фотон не мог путешествовать на заметные расстояния без помех, как он может это делать в сегодняшней Вселенной. Фотон должен был находить на своем пути огромное количество свободных электронов, которые могли эффективно рассеивать или поглощать его[21]. Если фотон рассеивается электроном, то он в общем случае либо отдает немного энергии электрону, либо получает от него немного энергии в зависимости от того, имел ли начальный фотон энергию больше или меньше, чем у электрона. «Среднее свободное время», в течение которого фотон может путешествовать, прежде чем он поглотится или испытает заметное изменение энергии, должно было быть очень малым, значительно меньше характерного времени расширения Вселенной. Соответствующее среднее свободное время для других частиц (электронов и атомных ядер) должно было быть еще короче. Таким образом, хотя в определенном смысле Вселенная вначале расширялась очень быстро, для отдельного фотона, электрона либо ядра это расширение занимало значительное время, такое, которого было достаточно для того, чтобы каждая частица многократно рассеялась, или поглотилась, или вновь испустилась.

Предполагается, что любая система такого рода, в которой отдельные частицы имеют время для многократных взаимодействий, приходит в состояние равновесия. Количество частиц, характеристики которых (положение, энергия, скорость, спин и др.) находятся в определенном интервале значений, должно стать таким, чтобы каждую секунду из этого интервала выбивалось и вносилось обратно равное число частиц. Таким образом, свойства подобной системы определяются не какими бы то ни было начальными условиями, а лишь условием достижения равновесия. Конечно, «равновесие» здесь не означает, что частицы замерзли — каждая из них непрерывно ударяется о своих соседей. Скорее, равновесие статистическое — это распределение частиц по положению, энергии и т. п., причем такое распределение, которое не меняется или меняется очень медленно.

Равновесие подобного статистического рода обычно называют «тепловым равновесием», так как такое состояние всегда характеризуется определенной температурой, которая должна быть одинакова во всей системе. В действительности, строго говоря, только в состоянии теплового равновесия и можно точно определить саму температуру. Мощная и глубокая ветвь теоретической физики, известная как статистическая механика, дает математические средства для расчета свойств любой системы в тепловом равновесии.

Достижение теплового равновесия происходит так, что это несколько напоминает предположительное действие механизма цен в классической экономике. Если спрос превышает предложение, то цена товаров будет расти, ограничивая эффективный спрос и поощряя увеличение производства. Если предложение превышает спрос, то цены падают, увеличивая эффективный спрос и приостанавливая дальнейшее производство. В обоих случаях спрос и предложение достигнут равенства. Точно так же, если имеется слишком много или слишком мало частиц с энергиями, скоростями и другими характеристиками в определенном интервале значений, то скорость, с которой они покидают этот интервал, будет больше или меньше скорости, с которой они попадают в него, пока не установится равновесие.

Конечно, механизм цен не всегда работает точно так, как это предполагается в классической экономике, но и здесь имеется аналогия — большинство физических систем в реальном мире весьма далеко от теплового равновесия. В центрах звезд имеется почти идеальное тепловое равновесие, так что мы можем с определенной уверенностью оценить, каковы там условия, но поверхность Земли ни в какой мере не близка к равновесию, и мы совершенно не уверены в том, будет завтра дождь или нет. Вселенная никогда не была в состоянии идеального теплового равновесия, так как помимо всего прочего она расширяется. Однако в ранний период, когда скорости рассеяния и поглощения отдельных частиц были много больше скорости космического расширения, Вселенную можно рассматривать как «медленно» переходящую от одного состояния почти идеального теплового равновесия к другому.

Решающим для всей аргументации в этой книге является то, что Вселенная когда-то прошла через состояние теплового равновесия. Согласно выводам статистической механики, свойства любой системы в тепловом равновесии полностью определяются, как только заданы температура системы и плотности нескольких сохраняющихся величин (о которых будет сказано чуть больше в следующей главе). Поэтому Вселенная имеет лишь очень ограниченные воспоминания о своих начальных условиях. Это грустно, если мы хотим реконструировать самое начало, но в то же время потеря компенсируется тем, что мы можем вывести ход событий с самого начала без слишком большого числа произвольных предположений.

Мы видели, что микроволновое излучение, открытое Пензиасом и Вилсоном, считается оставшимся от того времени, когда Вселенная находилась в состоянии теплового равновесия. Поэтому, чтобы понять, каковы ожидаемые свойства наблюдаемого фона микроволнового излучения, мы должны задать вопрос: каковы общие свойства излучения, находящегося в тепловом равновесии с веществом?

Случилось так, что именно этот вопрос исторически породил квантовую теорию и интерпретацию излучения в терминах фотонов. К 90-м годам девятнадцатого века стало известно, что свойства излучения в состоянии теплового равновесия с веществом зависят только от температуры. Более точно, количество энергии в единичном объеме такого излучения в любом заданном интервале длин волн дается универсальной формулой, содержащей только длину волны и температуру. Эта же формула дает количество излучения внутри ящика с непроницаемыми стенками, поэтому радиоастроном может использовать ее для интерпретации наблюдаемой им интенсивности радиошума с помощью понятия эквивалентной температуры. Эта же формула определяет количество излучения, испущенного за секунду с одного квадратного сантиметра полностью поглощающей поверхности на любой длине волны, так что излучение такого рода общеизвестно как «излучение черного тела». Таким образом, излучение черного тела характеризуется некоторым распределением энергии по длинам волн, даваемым универсальной формулой, зависящей только от температуры. Самый острый вопрос, с которым столкнулись физики-теоретики 90-х годов, был в том, чтобы найти эту формулу.

Правильная формула для излучения черного тела была найдена в последние недели девятнадцатого века Максом Карлом Эрнстом Людвигом Планком. Точный вид результата Планка показан на рис. 7 для температуры наблюдаемого космического микроволнового шума ЗК. Качественно формула Планка может быть описана следующим образом: в ящике, заполненном излучением черного тела, энергия в любом интервале длин волн плавно растет с увеличением длины волны, достигает максимума, а затем плавно падает. Это «распределение Планка» универсально и не зависит от природы вещества, с которым взаимодействует излучение, а зависит только от его температуры. В используемом в наши дни смысле, термин «излучение черного тела» означает любое излучение, в котором распределение энергии по длинам волн подчиняется формуле Планка независимо от того, действительно ли оно испущено черным телом или нет. Таким образом, в течение первого миллиона лет или около того, когда излучение и вещество находились в состоянии теплового равновесия, Вселенная должна была быть заполнена излучением черного тела с температурой, равной температуре того вещества, из которого она состояла.

 

Рис. 7. Распределение Планка.

Показана плотность энергии на единичный интервал длин волн излучения черного тела с температурой 3 К как функция длины волны. (Для температуры, которая больше 3 К на множитель f, необходимо только изменить длины волн на множитель 1/ f и увеличить плотности энергии на множитель f.) Прямая часть кривой справа приближенно описывается более простым распределением Рэлея — Джинса; кривая с таким наклоном ожидается не только для излучения черного тела, но и во многих других случаях. Крутое падение слева обязано квантовой природе излучения и является специфическим свойством излучения черного тела. Линия, помеченная «галактическое излучение», показывает интенсивность радиошума от нашей Галактики. (Стрелки указывают длину волны первоначального измерения Пензиаса и Вилсона и длину волны, для которой температура излучения может быть выведена из измерений поглощения первым возбужденным вращательным состоянием межзвездного циана.)

 

 

Важность планковского расчета выходит далеко за рамки проблемы излучения черного тела, так как в этом расчете Планк ввел новую идею, что энергия может существовать в виде отдельных порций или «квантов». Планк рассматривал только квантование энергии вещества в равновесии с излучением[22], но несколько лет спустя Эйнштейн предположил, что и само излучение также состоит из квантов (названных позднее фотонами). Эти достижения привели, в конце концов, в 20-е годы к великой интеллектуальной революции в истории науки, к замене классической механики совершенно новым языком — квантовой механикой.

В этой книге мы не собираемся углубляться в квантовую механику. Однако для понимания свойств излучения в расширяющейся Вселенной нам будет полезно посмотреть, как картина излучения в терминах фотонов приводит к общим свойствам планковского распределения.

Причина того, что плотность энергии излучения черного тела падает для очень больших длин волн, проста: излучение очень трудно загнать в любой объем, размеры которого меньше, чем длина волны. Это могло быть (и было) понято и без обращения к квантовой теории, просто на основе старой волновой теории излучения.

В то же время, уменьшение плотности энергии излучения черного тела для очень коротких длин волн невозможно понять в рамках неквантовой картины излучения. Хорошо известным следствием статистической механики является то, что при любой заданной температуре трудно получить любой сорт частиц, или волн, или других возбуждений, энергия которых была бы больше некоторой определенной величины, пропорциональной температуре. Однако, если бы излучение с короткой длиной волны могло иметь произвольно малую энергию, то не было бы ничего, что ограничивало бы полное количество излучения черного тела очень коротких длин волн. Это не только находилось бы в противоречии с экспериментом — это должно было бы привести к катастрофическому результату, заключающемуся в том, что полная энергия излучения черного тела всех длин волн равна бесконечности! Единственный выход состоял в том, чтобы предположить, что энергия существует в виде порций или «квантов», причем количество энергии в каждой порции увеличивается с уменьшением длины волны, так что при любой заданной температуре было бы очень мало излучения на коротких длинах волн, для которых порции содержат много энергии. В окончательной формулировке этой гипотезы, принадлежащей Эйнштейну, энергия любого фотона обратно пропорциональна длине волны; при любой заданной температуре излучение черного тела содержит очень мало фотонов со слишком большой энергией, следовательно, очень мало фотонов со слишком короткой длиной волны, что и объясняет падение планковского распределения в области коротких длин волн.

Конкретно энергия фотона с длиной волны 1 см равна 0,000124 электронвольта (эВ) и соответственно растет при уменьшении длины волны. Электронвольт — это удобная единица энергии, равная той энергии, которую приобретает один электрон при прохождении разности потенциалов в один вольт. Например, обычная батарейка карманного фонаря с напряжением 1,5 вольта тратит 1,5 эВ на каждый электрон, который она проталкивает через нить электрической лампочки. (В обычных метрических единицах энергии один электрон-вольт равен 1,602 × 10-12 эрга или 1,602 × 10-19 джоуля). Согласно правилу Эйнштейна, энергия фотона при длине волны в микроволновом диапазоне 7,35 см, на которую настроились Пензиас и Вилсон, была равна 0,000124 эВ, деленным на 7,35, т. е. 0,000017 эВ. В то же время, фотоны видимого света имеют среднюю длину волны около одной двадцатитысячной доли сантиметра (5 × 10-5 см), поэтому их энергия равна 0,000124 эВ, умноженным на 20 000, или приблизительно 2,5 эВ. В обоих случаях энергия фотона очень мала в макроскопических единицах и именно поэтому кажется, что фотоны сливаются вместе в непрерывные потоки излучения.

Между прочим, энергии химических реакций в общем случае имеют значения порядка электронвольта на атом или на электрон. Например, для того чтобы вырвать электрон из атома водорода, требуется 13,6 эВ, что представляет собой исключительно бурное химическое событие. Тот факт, что фотоны в солнечном свете также имеют энергии порядка электронвольта, чудовищно важен для всех нас; именно это позволяет им осуществлять необходимые для жизни химические реакции, такие как фотосинтез[23]. Энергии ядерных реакций, в общем случае, порядка миллиона электронвольт на ядро атома, и поэтому грамм плутония эквивалентен по взрывной энергии 1 тонне ТНТ[24].

Описание с помощью фотонов позволяет легко понять главные качественные свойства излучения черного тела. Во-первых, принципы статистической механики утверждают, что средняя энергия фотонов пропорциональна температуре, в то время, как правило Эйнштейна говорит нам, что длина волны любого фотона обратно пропорциональна его энергии. Отсюда, объединяя эти два правила, получаем, что типичная длина волны фотонов в излучении черного тела обратно пропорциональна температуре. Если выразить это количественно, получим, что типичная длина волны, вблизи которой сконцентрирована большая часть энергии излучения черного тела, равна 0,29 см при температуре 1 К и пропорционально уменьшается при более высоких температурах[25].

Например, непрозрачное тело при обычной «комнатной» температуре 300 К (27 °C) будет испускать излучение черного тела со средней длиной волны, равной 0,29 см, деленным на 300, т. е. около одной тысячной сантиметра. Это лежит в области инфракрасного излучения, и длина волны слишком велика, чтобы наши глаза могли его видеть. В то же время, поверхность Солнца имеет температуру около 5 800 К и, следовательно, испускаемый свет имеет максимум в спе



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 295; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.253.84 (0.014 с.)