![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления
|
Теореми про ймовірність суми подій.
Т. Ймовірність появи несумісних подій дорівнює сумі ймовірностей цих подій: P(A+B) = P(A) + P(B), якщо A*B=V Доведення: Нехай повна сукупність рівно можливих несумісних подій складається з n елементарних подій. Нехай A розпадається на k сприятливих подій, B – на m сприятливих подій. Оскільки А і В несумісні, то немає подій, які сприятливі для A i B одночасно. Тому P(A+B) = (k + m)/n = k/n + m/n = P(A) + P(B).
Т. Ймовірність суми двох подій рівна сумі їх ймовірностей мінус ймовірність їх суміщення. P(A+B) = P(A) + P(B) – P(A*B) Доведення: з діаграм Вена. (або алгебраїчно через суму несумісних) Умовні ймовірності (ймовірності добутку подій) Якщо ймовірність виконання події А залежить від виконання іншої події В, то ймовірність появи події А в цьому випадку називається умовною ймовірністю. P(A/B) – ймовірність події А, за умови, що відбулась подія В.
Т. Ймовірність добутку двох подій рівна добутку ймовірності однієї на умовну ймовірність другої, за умови, що відбулась перша: P(A*B) = P(A)* P(A/B) = P(B)* P(B/A) Доведення: Нехай події E1,E2,…,En утворюють повну сукупність рівноможливих подій, з яких r сприятливі для A, s – для B, m – для А і В одночасно. Тоді P(A*B) = m/n = (m/s) * (s/n) = P(B)*P(B/A) P(A*B) = m/n = (m/r) * (r/n) = P(A)*P(A/B). Незалежні події Якщо подія А не змінює ні сукупності умов S, ні сприятливих подій для події B, то подія B називається незалежною від події А. Формальніше можна сказати так: Подія А незалежна від події В, якщо P(A/B) = P(A). Аналогічно: подія В незалежна від події А, якщо P(В/А) = P(В).
Отже, з теореми про добуток подій отримуємо, що для незалежних подій P(A*B) = P(A)*P(B). Т. Якщо подія А не залежить від події В, то і подія В не залежить від події А. Доведення: Якщо P(A/B) = P(A), то P(A*B) = P(B) * P(A/B) = P(A)*P(B) = P(A)*P(B/A) => P(B) = P(B/A) => B не залежить від А. Незалежні в сукупності події Якщо подій більше двох, то вони можуть бути попарно залежні, незалежні, можуть зустрічатись ті чи інші види залежності в підмножинах подій.
Події А1,А2,…,An називаються незалежні в сукупності, якщо для будь-якої підмножини їх Ai1, Ai2, …, Aik виконується P(Ai1* Ai2*…* Aik) = P(Ai1) * P(Ai2) * … * P(Aik).
Це означає, що події можуть бути попарно незалежні, а в сукупності – ні. Формула повної ймовірності Повна сукупність несумісних подій – якщо вони попарно несумісні і хоча б одна з них точно відбувається.
Т. Нехай задана повна сукупність несумісних подій H1,H2,…,Hn, і подія А може відбутись лише в парі з однією з цих подій. Тобто: А = H1*A + H2*A + … + Hn*A. Тоді H1,H2,…,Hn називаються гіпотезами, а ймовірність події А обчислюється так: Доведення: Якщо події H1,H2,…,Hn попарно несумісні, то попарно несумісні будуть і події Hi*A (i=1..n). Тому з теореми про добуток несумісних подій маємо: а з теореми про ймовірність залежних подій: Це і є формула повної ймовірності. 7. Формула гіпотез (формула Байєса) Нехай задана повна сукупність несумісних подій H1,H2,…,Hn, і подія А може відбутись лише в парі з однією з цих подій. Тобто: А = H1*A + H2*A + … + Hn*A. Тоді H1,H2,…,Hn називаються гіпотезами. Нехай тепер відомо, що подія А відбулась, обчислимо P(Hi/A), тобто уточнити ймовірності гіпотез, виходячи з того факту, що подія А відбулась.
З теореми про ймовірність залежних подій маємо: Звідси, і з формули повної ймовірності отримуємо: Остання формула і називається формулою Байєса. Ймовірності P(Hi) називаються апріорні, а P(Hi/A) – апостеріорні. Залежні події. Регресія. Кореляція. Кажуть, що подія А залежить від події В, якщо P(A)!= P(A/B). Це означає, що подія А змінює або комплекс умов S, або набір сприятливих подій для події B.
Коефіцієнт регресії події А відносно події В є мірою залежності подій, і обчислюється так: p(A,B) = P(A/B) – P(A/!B) Аналогічно і події В відносно події А:
Т. Якщо коефіцієнт регресії = 0, то події незалежні, і навпаки, якщо події незалежні, то = 0. Доведення: Якщо події незалежні, то P(A/B) = P(A/!B) = P(A) => коеф. регресії = 0. Якщо коефіцієнт регресії = 0, то P(A/B) = P(A/!B) тоді з означення умовної ймовірності: P(A*B)/P(B) = P(A*!B) / P(!B), тоді P(A*B)*(1-P(B)) = (P(A)-P(A*B))*P(B) => P(A)*P(B)=P(A*B) => A і B незалежні.
Коефіцієнт кореляції подій А і В називається величина: Властивості коефіцієнту кореляції: · між еквівалентними подіями = 1 · між протилежними подіями = -1 · між незалежними подіями = 0, і навпаки, якщо = 0, то незалежні. · R(A,B) = R(B,A) · -1 <= R(A,B) <= 1 · R(A,B) = R(!A,!B) · R(A,B) = -R(!A,B) = -R(A,!B)
|
||||||
Последнее изменение этой страницы: 2016-04-06; просмотров: 469; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.233.219.103 (0.013 с.) |