Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Магистральный медиашлюз SURPASS hiG 1100↑ ⇐ ПредыдущаяСтр 8 из 8 Содержание книги
Поиск на нашем сайте
По проекту на сети в г. Нижнекамске после организации NGN будет действовать один транзитный медиашлюз ТШ типа SURPASS hiG 1100 для подключения цифровой ОПТС-42/43 и сельской части сети к кольцу NGN. Магистральный медиашлюз SURPASS hiG 1100 имеет следующие характеристики: - интерфейс к ТфОП E1 electric; - интерфейсы к IP-сети 2 x 10/100BaseT Fast Ethernet; - - голосовые кодеки: G.711, G.723.1, G.726, G.729 A и В, G.726; - прозрачный режим (clearmode) - для передачи цифровых данных без кодека или обработки эхоподавления; - все стандарты факсов (включая Group 3 и Group 4) передаются прозрачно; - все стандарты модемной связи передаются прозрачно; - обнаружение и подавление тишины; - вставка комфортного шума; - эхо-подавление G.168 и G.165: - адаптивный буфер джиттера; - DTMF распознавание и генерация: - DTMF внеполосная передача через MGCP; - DTMF внутриполостная передача (G.711); - обработка протокола RTP/RTCP и статистика; - регулируемый период пакетизации RTP; - маркирование "Типа сервиса" (TOS) для RTP (RFC 791). Протоколы NGN Коммутатор Softswitch управляет обслуживанием вызовов, т.е. установлением и разъединением соединений. Также Softswitch осуществляет координацию обмена сигнальными сообщениями между различными сетями, иначе говоря, Softswitch координирует действия, обеспечивающие соединение с логическими объектами в разных сетях и преобразует информацию в сообщениях таким образом, чтобы они были поняты на обеих сторонах разнородных сетей (рис. 7.1). Рис. 7.1 – Схема взаимодействия Softswitch с оборудованием NGN
Основные типы сигнализации, которые использует Softswitch: - сигнализация для управления соединениями; - сигнализация для взаимодействия коммутаторов Softswitch между собой; - сигнализация для управления транспортными шлюзами. Основными протоколами сигнализации для управления соединениями являются SIP, ОКС-7, H.323. Также используются: - абонентская сигнализация EDDS-1 первичного доступа ISDN; - протокол абонентского доступа через интерфейс V5; - российская версия сигнализаций R1, R2 – R 1.5. Основными протоколами сигнализации управления транспортными шлюзами являются MGCP и MEGACO/Н.248, а основными протоколами сигнализации взаимодействия между Softswitch — SIP-Т и BICC. В таблице 7.1 приведены функциональные назначения протоколов в архитектуре Softswitch. Таблица 7.1
Протокол RTP Основным транспортным протоколом для мультимедийных приложений стал протокол реального времени RTP (Real Time Protocol), предназначенный для организации передачи пакетов с кодированными речевыми сигналами по пакетной сети. Передача пакетов RTP ведется поверх протокола UDP, работающего, в свою очередь, поверх IP (рис. 7.2). Рис. 7.2 - Уровни протоколов RTP/UDP/IP
Характерные для IP-сетей временные задержки и вариация задержки пакетов (джиттер) могут серьезно исказить информацию, чувствительную к задержке, например речь и видеоинформацию, сделав ее абсолютно непригодной для восприятия. Джиттер гораздо сильнее влияет на субъективную оценку качества передачи, чем абсолютное значение задержки. Протокол RTP позволяет компенсировать негативное влияние джиттера на качество речевой и видеоинформации, но в то же время он не имеет собственных механизмов, гарантирующих своевременную доставку пакетов или другие параметры качества услуг, – это осуществляют нижележащие протоколы. Он даже не обеспечивает все те функции, которые обычно предоставляют транспортные протоколы, в частности функции исправления ошибок и управления потоком. Обычно протокол RTP базируется на протоколе UDP и использует его функции, но может работать и поверх других транспортных протоколов. Протокол Н.323 Для построения сетей IP-телефонии первой стала рекомендация H.323 МСЭ-Т, которая является также первой зонтичной спецификацией систем мультимедийной связи для работы в сетях с коммутацией пакетов, не обеспечивающих гарантированное качество обслуживания (рис. 7.3).
Рис. 7.3 - Структура сети Н.323
Сети, построенные на базе протоколов H.323, ориентированы на интеграцию с телефонными сетями и могут рассматриваться как сети ЦСИС (цифровая служба с интеграцией служб), наложенные на сети передачи данных. В частности, процедура установления соединения в таких сетях IP-телефонии базируется на рекомендации МСЭ-Т Q.931 и практически идентична той же процедуре в сетях ЦСИС. При этом рекомендация H.323 предусматривает применение разнообразных алгоритмов сжатия речевой информации, что позволяет использовать полосу пропускания ресурсов передачи гораздо более эффективно, чем в сетях с коммутацией каналов.
Основными устройствами сети Н.323 являются: терминал, шлюз, привратник. В отличие от устройств ТфОП, устройства Н.323 не имеют жестко закрепленного места в сети, а подключаются к любой точке IP-сети. Однако при этом сеть Н.323 разбивается на зоны, а каждой зоной управляет привратник. Терминал H.323 – оконечное устройство сети IP-телефонии, обеспечивающее 2-стороннюю речевую или мультимедийную связь с другим терминалом, шлюзом или устройством управления конференциями. Шлюз является соединяющим мостом между ТфОП и IP. Основная функция шлюза — преобразование речевой (мультимедийной) информации, поступающей со стороны ТфОП с постоянной скоростью, в вид, пригодный для передачи по IP-сетям, т. е. кодирование информации, подавление пауз в разговоре, упаковка информации в пакеты RTP/UDP/IP, а также обратное преобразование. Кроме того, шлюз должен преобразовывать аналоговую абонентскую сигнализацию, сигнализацию по 2ВСК и сообщения систем сигнализации DSS1 и OKC7 в сигнальные сообщения Н.323. При отсутствии в сети привратника должна быть реализована еще одна функция шлюза: преобразование номера ТфОП в транспортный адрес IP-сети. Привратник выполняет функции управления зоной сети IP-телефонии, в которую входят терминалы и шлюзы, зарегистрированные у данного привратника. Разные участки зоны сети H.323 могут быть территориально разнесены, но соединяться друг с другом через маршрутизаторы (рис. 7.4).
Рис. 7.4 - Зоновая архитектура сети H.323
В число наиболее важных функций, выполняемых привратником, входят: - преобразование alias-адреса (имени абонента, телефонного номера, адреса электронной почты и др.) в транспортный адрес сетей с маршрутизацией пакетов IP (IP-адрес и номер порта RTP); - контроль доступа пользователей системы к услугам IP-телефонии при помощи сигнализации RAS (Registration, Admission and Status); - контроль, управление и резервирование пропускной способности сети; - маршрутизация сигнальных сообщений между терминалами, расположенными в одной зоне. Привратник также обеспечивает для пользователя возможность получить доступ к услугам любого терминала в любом месте сети и способность сети идентифицировать пользователей при их перемещении из одного места в другое.
Протокол SIP Вторым вариантом построения сетей стал протокол SIP, разработанный комитетом IETF (Internet Engineering Task Force); спецификации протокола представлены в документе RFC 2543. Протокол инициирования сеансов – Session Initiation Protocol (SIP) – является протоколом прикладного уровня и предназначается для организации, модификации и завершения сеансов связи: мультимедийных конференций, телефонных соединений и распределения мультимедийной информации, в основу которого заложены следующие принципы: 1) персональная мобильность пользователей. Пользователю присваивается уникальный идентификатор, а сеть предоставляет ему услуги связи вне зависимости от того, где он находится; 2) масштабируемость сети (характеризуется в первую очередь возможностью увеличения количества элементов сети при ее расширении); 3) расширяемость протокола характеризуется возможностью дополнения протокола новыми функциями при введении новых услуг и его адаптации к работе с различными приложениями. Протокол SIP может быть использован совместно с протоколом H.323. Возможно также взаимодействие протокола SIP с системами сигнализации ТфОП – DSS1 и ОКС7. Одной из важнейших особенностей протокола SIP является его независимость от транспортных технологий. В качестве транспорта могут применяться протоколы Х.25, Frame Relay, AAL5, IPX и др. Структура сообщений SIP не зависит от выбранной транспортной технологии. Но в то же время предпочтение отдается технологии маршрутизации пакетов IP и протоколу UDP. Пример построения сети SIP представлен на рис. 7.5.
Рис. 7.5 - Пример построения SIP-сети
Сеть SIP содержит следующие основные элементы. Агент пользователя (User Agent или SIP client) является приложением терминального оборудования и включает в себя две составляющие: клиент агента пользователя (User Agent Client – UAC) и сервер агента пользователя (User Agent Server – UAS), иначе называемые клиент и сервер. Клиент UAC инициирует SIP-запросы, т.е. выступает в качестве вызывающей стороны. Сервер UAS принимает запросы и отвечает на них, т.е. выступает в качестве вызываемой стороны. Запросы могут передаваться не прямо адресату, а на некоторый промежуточный узел (прокси-сервер и сервер переадресации). Прокси-сервер (proxy server) принимает запросы, обрабатывает их и отправляет дальше на следующий сервер, который может быть как другим прокси-сервером, так и последним UAS. Таким образом, прокси-сервер принимает и отправляет запросы и клиента, и сервера. Приняв запрос от UAC, прокси-сервер действует от имени этого UAC; Сервер переадресации (redirect server) передает клиенту в ответе на запрос адрес следующего сервера или клиента, с которым первый клиент связывается затем непосредственно. Он не может инициировать собственные запросы. Адрес сообщается первому клиенту в поле Contact сообщений SIP. Таким образом, этот сервер просто выполняет функции поиска текущего адреса пользователя. Сервер местоположения (location server) – база адресов, доступ к которой имеют SIP-серверы, пользующиеся ее услугами для получения информации о возможном местоположении вызываемого пользователя. Приняв запрос, сервер SIP обращается к серверу местоположения, чтобы узнать адрес, по которому можно найти пользователя. В ответ тот сообщает либо список возможных адресов, либо информирует о невозможности найти их.
Протокол MGCP Рабочая группа MEGACO комитета IETF разработала протокол управления шлюзами – Media Gateway Control Protocol (MGCP). При разработке протокола управления шлюзами рабочая группа MEGACO опиралась на принцип декомпозиции, согласно которому шлюз разбивается на отдельные функциональные блоки (рис. 7.6):
- транспортный шлюз MG – Media Gateway, который выполняет функции преобразования речевой информации, поступающей со стороны ТфОП с постоянной скоростью, в вид, пригодный для передачи по сетям с маршрутизацией пакетов IP: кодирование и упаковку речевой информации в пакеты RTP/UDP/IP, а также обратное преобразование; - устройство управления CA – Call Agent, выполняющее функции управления шлюзом; - шлюз сигнализации SG – Signaling Gateway, который обеспечивает доставку сигнальной информации, поступающей со стороны ТфОП, к устройству управления шлюзом и перенос сигнальной информации в обратном направлении. Таким образом, весь интеллект функционально распределенного шлюза размещается в устройстве управления, функции которого в свою очередь могут быть распределены между несколькими компьютерными платформами. Шлюз сигнализации выполняет функции STP – транзитного пункта системы сигнализации по общему каналу – ОКС7. Транспортные шлюзы выполняют только функции преобразования речевой информации. Одно устройство управления обслуживает одновременно несколько шлюзов. В сети может присутствовать несколько устройств управления. Предполагается, что эти устройства синхронизованы между собой и согласованно управляют шлюзами, участвующими в соединении. Рабочая группа MEGACO не определяет протокол синхронизации работы устройств управления, однако в ряде работ, посвященных исследованию возможностей протокола MGCP, для этой цели предлагается использовать протоколы H.323, SIP или ISUP/IP. Перенос сообщений протокола MGCP обеспечивает протокол UDP. Одно из основных требований, предъявляемых к протоколу MGCP, состоит в том, что устройства, реализующие этот протокол, должны работать в режиме без сохранения информации о последовательности транзакций между устройством управления и транспортным шлюзом, т.е. в устройствах не требуется реализации конечного автомата для описания этой последовательности. Протокол MGCP является внутренним протоколом, поддерживающим обмен информацией между функциональными блоками распределенного шлюза. Протокол MGCP использует принцип master/slave (ведущий/ведомый), причем устройство управления шлюзами является ведущим, а транспортный шлюз – ведомым устройством, которое выполняет команды, поступающие от устройства управления. Такое решение обеспечивает масштабируемость сети и простоту эксплуатационного управления сетью через устройство управления шлюзами. К тому же неинтеллектуальные шлюзы требуют меньшей производительности процессоров и, как следствие, оказываются менее дорогими. Кроме того, обеспечивается возможность быстро добавлять новые протоколы сигнализации и новые дополнительные услуги, так как нужные для этого изменения затрагивают только устройство управления шлюзами, а не сами шлюзы. Рабочей группой MEGACO предложена следующая классификация транспортных шлюзов (Media Gateways): - Trunking Gateway – шлюз между ТфОП и сетью с маршрутизацией пакетов IP, ориентированный на подключение к телефонной сети посредством большого количества цифровых трактов (от 10 до нескольких тысяч) с использованием системы сигнализации ОКС 7; - Voice over ATM Gateway – шлюз между ТфОП и АТМ - сетью, который также подключается к телефонной сети посредством большого количества цифровых трактов (от 10 до нескольких тысяч); - Residential Gateway – шлюз, подключающий к IP-сети аналоговые, кабельные модемы, линии xDSL и широкополосные устройства беспроводного доступа; - Access Gateway – шлюз для подключения к сети IP-телефонии небольшой учрежденческой АТС через аналоговый или цифровой интерфейс; - Business Gateway – шлюз с цифровым интерфейсом для подключения к сети с маршрутизацией IP-пакетов учрежденческой АТС при использовании, например, системы сигнализации DSS1; - Network Access Server – сервер доступа к IP-сети для передачи данных; - Circuit switch или packet switch – коммутационные устройства с интерфейсом для управления от внешнего устройства. Протокол MEGACO/H.248 Рабочая группа MEGACO комитета IETF, продолжая исследования, направленные на усовершенствование протокола управления шлюзами, создала более функциональный (по сравнению с рассмотренным в предыдущей главе протоколом MGCP) протокол MEGACO. Но разработкой протоколов управления транспортными шлюзами, кроме комитета IETF, занималась еще и исследовательская группа SG 16 Международного союза электросвязи. Спецификации адаптированного протокола приведены в рекомендации ITU-T H.248. Рассмотрим кратко основные особенности протокола MEGACO/H.248. Для переноса сигнальных сообщений MEGACO/H.2488 могут использоваться протоколы UDP, TCP, SCTP или транспортная технология ATM. Поддержка для этих целей протокола UDP – одно из обязательных требований к контроллеру шлюзов. Протокол TCP должен поддерживаться и контроллером, и транспортным шлюзом, а поддержка протокола SCTP, так же как и технологии ATM, является необязательной. При описании алгоритма установления соединения с использованием протокола MEGACO комитет IETF опирается на специальную модель процесса обслуживания вызова, отличную от модели MGCP. Протокол MEGACO оперирует с двумя логическими объектами внутри транспортного шлюза: порт (termination) и контекст (context), которыми может управлять контроллер шлюза (рис. 7.7).
Рис. 7.7 - Примеры модели процесса обслуживания вызова
Порты являются источниками и приемниками речевой информации. Определено два вида портов: физические и виртуальные. Физические порты, существующие постоянно с момента конфигурации шлюза, — это аналоговые телефонные интерфейсы оборудования, поддерживающие одно телефонное соединение, или цифровые каналы, также поддерживающие одно телефонное соединение и сгруппированные по принципу временного разделения каналов в тракт Е1. Виртуальные порты, существующие только в течение разговорной сессии, являются портами со стороны IP-сети (RTP-порты), через которые ведутся передача и прием пакетов RTP. Контекст – это отображение связи между несколькими портами, то есть абстрактное представление соединения двух или более портов одного шлюза. В любой момент времени порт может относиться только к одному контексту, который имеет свой уникальный идентификатор. Существует особый вид контекста – нулевой. Все порты, входящие в нулевой контекст, не связаны ни между собой, ни с другими портами. Например, абстрактным представлением свободного (не занятого) канала в модели процесса обслуживания вызова является порт в нулевом контексте. Порт имеет уникальный идентификатор (TerminationID), который назначается шлюзом при конфигурации порта. Например, идентификатором порта может служить номер тракта Е1 и номер временного канала внутри тракта. При помощи протокола MEGACO контроллер может изменять свойства портов шлюза. Свойства портов группируются в дескрипторы, которые включаются в команды управления портами.
Заключение
В дипломном проекте разработан план построения сети следующего поколения NGN в г. Нижнекамске на базе оборудования SURPASS фирмы Siemens, а именно: - приведен состав оборудования и архитектура сети NGN; - дана характеристика оборудования гибкого коммутатора Soft switch hiE 9200, универсального абонентского медиашлюза MG hiG 1600, транспортного шлюза MG hiG 1100; - рассчитана производительность гибкого коммутатора; - сделан расчет параметров интерфейсов подключения гибкого коммутатора к пакетной сети; - рассчитана полоса пропускания и определены интерфейсы медиашлюзов hiG 1600 и hiG1100; - приведены технические характеристики медиашлюзов; - рассмотрены протоколы сигнализации Softswitch; - сделан расчет полосы пропускания в пакетной транспортной сети для передачи Интернет - трафика; - рассчитана полоса пропускания для видеоуслуг IP-TV и VoD. Построение NGN г. Нижнекамске позволит не только увеличить телефонную плотность в городе и сельских населенных пунктах, но и обеспечить его население телефонной связью высокого качества и предоставить ему широкий спектр дополнительных видов услуг, а также увеличит структурную надежность сети.
|
||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 858; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.189.192.220 (0.014 с.) |