Уравнения линии конечной длины 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Уравнения линии конечной длины

Поиск

Постоянные и в полученных в предыдущей лекции формулах

; (5)

 

(6)

определяются на основании граничных условий.

Пусть для линии длиной l (см. рис. 1) заданы напряжение и ток в начале линии, т.е. при .

Тогда из (5) и (6) получаем

откуда

Подставив найденные выражения и в (5) и (6), получим

(7)

 

(8)

Уравнения (7) и (8) позволяют определить ток и напряжение в любой точке линии по их известным значениям в начале линии. Обычно в практических задачах бывают заданы напряжение и ток в конце линии. Для выражения напряжения и тока в линии через эти величины перепишем уравнения (5) и (6) в виде

; (9)

 

. (10)

Обозначив и , из уравнений (9) и (10) при получим

откуда

После подстановки найденных выражений и в (9) и (10) получаем уравнения, позволяющие определить ток и напряжение по их значениям в конце линии

; (11)

 

. (12)

 

Уравнения длинной линии как четырехполюсника

В соответствии с (11) и (12) напряжения и токи в начале и в конце линии связаны между собой соотношениями

;

.

Эти уравнения соответствуют уравнениям симметричного четырехполюсника, коэффициенты которого ; и ; при этом условие выполняется.

Указанное означает, что к длинным линиям могут быть применены элементы теории четырехполюсников, и, следовательно, как всякий симметричный четырехполюсник, длинная линия может быть представлена симметричной Т- или П- образной схемами замещения.

 

Определение параметров длинной линии из опытов
холостого хода и короткого замыкания

Как и у четырехполюсников, параметры длинной линии могут быть определены из опытов холостого хода (ХХ) и короткого замыкания (КЗ).

При ХХ и , откуда входное сопротивление

. (13)

При КЗ и . Следовательно,

. (14)

На основании (13) и (14)

(15)

и

,

откуда

. (16)

Выражения (15) и (16) на основании данных эксперимента позволяют определить вторичные параметры и линии, по которым затем могут быть рассчитаны ее первичные параметры и .

 

Линия без потерь

Линией без потерь называется линия, у которой первичные параметры и равны нулю. В этом случае, как было показано ранее, и . Таким образом,

,

откуда .

Раскроем гиперболические функции от комплексного аргумента :

Тогда для линии без потерь, т.е. при , имеют место соотношения:

и .

Таким образом, уравнения длинной линии в гиперболических функциях от комплексного аргумента для линии без потерь трансформируются в уравнения, записанные с использованием круговых тригонометрических функций от вещественного аргумента:

; (17)

 

. (18)

Строго говоря, линия без потерь (цепь с распределенными параметрами без потерь) представляет собой идеализированный случай. Однако при выполнении и , что имеет место, например, для высокочастотных цепей, линию можно считать линией без потерь и, следовательно, описывать ее уравнениями (17) и (18).

 



Поделиться:


Последнее изменение этой страницы: 2017-02-22; просмотров: 222; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.211.49 (0.009 с.)