Методика карстовых исследований 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Методика карстовых исследований



Карстовый процесс не является непрерывным. Вековые, сезонные, даже суточные изменения режима температур, осадков и влажности воздуха влияют на его интенсивность. Поднятия и опускания вызывают смены периодов активизации и затухания закарстования. При движении вод от области питания к базису карстования происходит осаждение переносимых солей. Об этом свидетельствуют вторичная минерализация пустот в горных породах, кольматаж и заполнение макро- и микротрещин, натечные образования большой мощности в подземных полостях. Помимо неравномерности карстового процесса во времени весьма четко проявляется его неравномерность в пределах геологического пространства, обусловленная неоднородностью вещественного состава, структур и текстур горных пород, а также тектонической трещиноватостью.

Основными задачами карстолого-спелеологических исследований являются учет, прогноз и разработка мероприятий, предотвращающих вредное воздействие карста на хозяйственную деятельность человека. Изучение литологии и трещинной проницаемости карстующихся пород, как основных условий развития карста, должно способствовать решению этих задач.

Выделение типов и разновидностей пород, в различной степени подверженных закарстованию, проводится в первую очередь по их вещественному составу. Особое значение имеют количественные соотношения и структурные связи растворимых породообразующих минералов. Их определяют всеми современными методами, начиная с микроскопических и кончая химико-аналитическими, рентгеноструктурными, термическими, окрашивания, люминесцентными и инфракрасной спектроскопии. Особую роль играет выяснение характера вторичных процессов, изменяющих проницаемость пород: доломитизации, перекристаллизации, сульфатизации.

Важным моментом является анализ нерастворимых примесей. При этом необходимо не только выяснить минералогию нерастворимого остатка, в зависимости от которой уменьшается или увеличивается водопропускная способность породы, но и установить гранулометрический его состав, который определяет соотношение коррозии и эрозии в карстовом процессе. Структурные и текстурные характеристики породы, зависящие от ее вещественного состава, условий отложения и преобразования осадка, исследуются при литолого-фациальном анализе, проводимом как в полевых условиях, так и камерально. Под микроскопом изучаются большие шлифы, где можно наблюдать переход одних участков микроструктур в другие, выяснить характер вторичных процессов. В таких шлифах необходимо определять поровую и микротрещинную проницаемость. Для выделенных разновидностей пород следует определять вводно-физические и инженерно-геологические характеристики. После статистической обработки характеристик пород, полученных в полевых и лабораторных условиях, можно выделить ряд факторов, влияющих на скорость карстообразования, морфологию карстопроявлений и интенсивность карстового процесса.

Результаты аналитических работ позволяют построить ряд карт и схем. Эти карты могут служить основой для карстологического районирования и прогнозирования хода современных геодинамических процессов.

Исследование трещиноватости горных пород проводится поэтапно. Каждые последующий этап может быть результативным лишь при условии выполнения предыдущего этапа и получения соответствующих вторичных материалов.

На первом этапе при проведении полевых исследований собирают фактический материал. Традиционные методы изучения трещин позволяют выявить и задокументировать элементы их ориентировки в пространстве, характер поверхностей, размеры элементов трещин (протяженность, зияние), состав и степень заполнения, данные по водоотдаче. Непосредственным измерением могут быть получены характеристики густоты трещин, однако в большинстве случаем для этого необходимы пересчеты на угол среза фронтом обнажения. Обязательной является фиксация приуроченности трещин к элементам тектонической структуры и литологическим комплексам пород, а также расположения трещин в пределах обнажения и размеров исследуемых площадок.

В настоящее время все большее значение приобретают фотометоды: фототеодолитная съемка и аэрофотосъемка, позволяющие не только сократить время проведения полевых исследований, но и повысить точность измерения крупных трещин, дешифрируемых на снимках, а также оконтуривать и привязывать с высокой точностью к картам участки с разнотипной трещиноватостью. Эти методы дают возможность изучить крупные и редкие трещины, обнаруживаемые по изменению отражающей способности грунтов, малым формам рельефа, характеру распределения растительность. Зачастую карстовые формы рельефа приурочены к таким трещинам (либо к их пересечениям), а полости и пещеры ориентируются вдоль них. Первичным материалом в этом случае является фотоснимок и элементы его привязки к местности и аппаратуре. Чтобы перейти к статистической обработке данных о трещиноватости необходим камеральный этап дешифрования снимка и схема зафиксированной на нем информации с применением стереокомпараторов.

В последнее время широкое распространение получили методы морфоструктурного анализа территорий по крупномасштабным топографическим картам. Их можно рассматривать как родственные фотометодам, однако, поскольку при этом используются вторичные материалы (карты, построенные с применением стереофотограмметрии), отражающие главным образом элементы рельефа, гидрографической и эрозионной сети, то в этом случае могут быть выделены еще более крупные линеаменты. Для изучения проницаемости горных пород целесообразно применять петрографические методы изучения трещиноватости в шлифах и пришлифовках, когда объектом исследования являются малые и микротрещины.

Второй этап изучения трещиноватости заключается в статистической обработке первичного материала, что позволяет перейти к характеристике трещиноватости как совокупности тесно связанных между собой генетически и приуроченных к определенным геологическим телам трещинных систем. Применяемые методы определяют детальность и достоверность выводов при последующем анализе трещиноватости. Важное значение приобретает учет точности исходных данных. Моделировка поверхностей трещин приводит к снижению точности их ориентировки, что вынуждает при составлении распределений трещин ранжировать замеры по классам увеличенной ширины.

Статистическая обработка первичного материала позволяет сгруппировать материал в соответствии с геологической задачей, получить описательные характеристики трещиноватости, выполнить графические построения, рассчитать статистику распределений и выявить основные системы трещин, вычислить значения густоты трещин различных направлений и суммарной густоты, оценить обусловленную трещиноватостью анизотропию свойств разреза. К сожалению, изучение трещиноватости часто носит описательный характер, реже – сравнительный характер и завершается составлением роз-диаграмм азимутального типа. Остаются неиспользованными возможности выявления связей трещиноватости с тектонической структурой района, с вещественным составом и инженерно-геологическими характеристиками пород, с обвовдненностью разреза. На третьем этапе анализируется трещиноватость. При этом используются результаты статистической обработки, рассматриваемые на фоне тектонической структуры, литологических, инженерно-геологических либо гидрогеологических характеристик разреза исследуемого участка. На данном этапе выбирается рабочая гипотеза, вычисляются статистики связей, и проверяется коррелируемость статистик распределений трещин с характеристиками изучаемых явлений, оценивается согласие распределения с рабочей гипотезой, анализируются не учтенные рабочей гипотезой влияния, устанавливаются закономерные, обычно стохастические, реже функциональные связи между трещиноватостью и изучаемыми явлениями. В результате можно получить математическую модель явления или одномерный (профиль), двумерный (разрез, план) либо трехмерный (карта) графический материал, характеризующий эту модель.

На заключительном этапе составляется прогноз исследуемого явления. Прогноз может использоваться для построения карт на участки, недостаточно охарактеризованные первичным материалом, но позволяющим оценить вероятность применимости полученной модели. Более сложным является прогноз динамики процесса, поскольку полученная модель не всегда допускает возможность непосредственной экстраполяции во времени.

Изучение параметров и характеристик трещиноватости, трещинной проницаемости, трещинной анизотропии разреза, а также выявление связей и влияния трещиноватости на гидрогеологические и инженерно-геологические характеристики карстующихся толщ, является необходимым, но не достаточным условием для составления прогноза хода карстового процесса и выработкой схемы мероприятий для снижения либо предотвращения вредных его воздействий на народное хозяйство и окружающую среду. В связи с этим большое значение приобретает специальное литологическое изучение скорости карстования различных генетических и структурных разновидностей карстующихся пород, влияния нерастворимых примесей на карстовый процесс, а также выявление при изучении вторичной минерализации пород и заполнителей трещинно-полостных систем признаков активизации либо затухания карста. В данном случае также целесообразно применение аппарата статистической обработки получаемых первичных материалов.

Внедрение в геологическую практику компьютерной техники позволяет резко сократить трудоемкость вычислительных операций и повысить эффективность карстолого-спелеологических исследований.

 


Факторы карсто образования

Среди факторов, определяющих процесс карстообразования, Н.А. Гвоздецкий выделяет следующие: химический состав горных пород, их структуру, трещиноватость, покровные образовании и рельеф, силу тяжести, подземные воды, тектонические структуры, мощность карстующихся пород.[6]

 



Поделиться:


Последнее изменение этой страницы: 2017-02-21; просмотров: 278; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.64.241 (0.005 с.)