Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Молекулы проходят через мембраны благодаря трем различным процессам: простой диффузии, облегчённой диффузии, активному транспорту.Содержание книги
Поиск на нашем сайте
Простая диффузия - пример пассивного транспорта. Его направление определяется только разностью концентраций вещества по обеим сторонам мембраны (градиентом концентрации). Путем простой диффузии в клетку проникают неполярные (гидрофобные) вещества, растворимые в липидах и мелкие незаряженные молекулы (например, вода). Большинство веществ, необходимых клеткам, переносится через мембрану с помощью погружённых в нее транспортных белков (белков-переносчиков). Все транспортные белки, по-видимому, образуют непрерывный белковый проход через мембрану. Различают две основные формы транспорта с помощью переносчиков: облегченная диффузия и активный транспорт. Облегченная диффузия обусловлена градиентом концентрации, и молекулы движутся соответственно этому градиенту. Однако если молекула заряжена, то на ее транспорт влияет как градиент концентрации, так и общий электрический градиент поперек мембраны (мембранный потенциал). Активный транспорт - это перенос растворенных веществ против градиента концентрации или электрохимического градиента с использованием энергии АТФ. Энергия требуется потому, что вещество должно двигаться вопреки своему естественному стремлению диффундировать в противоположном направлении.
Некоторые транспортные белки переносят одно растворенное вещество через мембрану (унипорт). Другие функционируют как котранспортные системы, в которых перенос одного растворенного вещества зависит от одновременного или последовательного переноса второго вещества. Второе вещество может транспортироваться в том же направлении (симпорт) либо в противоположном (антипорт). Na-K насос Одной из важнейших и наиболее изученных систем активного транспорта в клетках животных является Na-K насос. Большинство клеток животных поддерживают разные градиенты концентрации ионов натрия и калия по разные стороны плазматической мембраны: внутри клетки сохраняется низкая концентрация ионов натрия и высокая концентрация ионов калия. Энергия, необходимая для работы Na-K насоса, поставляется молекулами АТФ, образующимися при дыхании. О значении этой системы для всего организма свидетельствует тот факт, что у находящегося в покое животного более трети АТФ затрачивается на обеспечение работы этого насоса. Рис 9. Модель работы Na-K насоса А. Ион натрия в цитоплазме соединяется с молекулой транспортного белка. Типы обменных процессов Совокупность всех реакций биосинтеза принято называть ассимиляцией (лат. ассимиляцию – уподобление), или пластическим обменом. В се реакции пластического обмена идут с поглощением энергии. Противоположный процесс – распад и окисление клеткой органических соединений – носит название диссимиляции (лат. диссимиляцию - делать неподобным) или энергетического обмена. Все реакции этого процесса идут с выделением энергии. АТФ как источник клеточной энергии. Для того чтобы осуществлять и выполнять определенные функции клетка нуждается в энергии. Энергия, приобретаемая клеткой, сохраняется главным образом в виде молекул аденозитрифосфата – АТФ (аденозитрифосфорная кислота). Молекула АТФ является нуклеотидом, так как состоит из азотистого основания – аделина, сахара, рибозы и трех фосфатных групп (остатки фосфорной кислоты). АТФ - это макроэргическое соединение, поскольку в двух фосфатных связях накапливается большое количество энергии. Химические связи, которыми соединены молекулы фосфорной кислоты, неустойчивы. Под действием фермента АТФ – в ходе гидролиза (присоединения воды) один богатый энергией остаток фосфорной кислоты отщепляется от молекулы АТФ с образованием аденозиндифосфата АТФ и выделением энергии в количестве около 40 кДж/моль. Указанный процесс называется дефосфорилированием. Обратное явление переход АДФ в АТФ путем присоединения неорганического фосфата – фосфорилированием. Накопление и концентрация энергии в макроэнергетических фосфатных связях при образовании АТФ происходит в ходе энергетического обмена, а также во время фотосинтеза. Образование АТФ в процессе энергетического обмена. Энергетическим обменом или диссимиляцией называются процессы распада и окисления клеткой органических соединений. Внутриклеточный этап энергетического обмена подразделяется на два периода. Первый период безкислородный (анаэробный). Глюкоза поступает из крови в цитоплазму клеток, где под действием ферментов преобразуется в две молекулы молочной кислоты. В реакции участвуют АДФ и Н2 РО4. С6Н2 О6 + 2Н3 РО4 + 2АДФ → С 3Н6 О3 + 2АТФ + 2Н2О Образование двух молекул АТФ из одной молекулы глюкозы в целом мало эффективно. Количество выделяемой энергии невелико 200 кДж. Основные процессы, связанные с накоплением энергии, происходит во втором периоде. Второй период – кислородный (аэробный) называют окислительным фосфорилированием (клеточное дыхание). Входе его наблюдается полное кислородное расщепление молочной кислоты до двуокиси углерода СО2. Происходит освобождение атомов водорода Н (водород выделяется из углеводов в результате прохождения ими сложного ряда химических превращений, называемых циклом Кребса). Реакция протекает с участием АДФ и Н3 РО4.
2С2 Н6 О3 + 6О + 36АДФ + 36НРО → 6СО + 36 АТФ + 42НО При этом выделяется большое количество энергии 2600 кДж. Окислительное фосфорилирование совершается в митохондриях клеток. Атомы водорода Н (электроны и протоны) переносятся на систему ферментов в митохондриальной мембране. Здесь они окисляются, то есть теряют электроны: Н 2 __- 2 е → 2Н+. Образуются свободные электроны е и ионы водорода Н + (протоны). В ходе дыхания электроны несколько раз пересекают мембрану, вынося протоны Н+ в наружную поверхность. Количество положительно заряженных протонов там резко возрастает. Возникает градиент концентрации протонов и электрический потенциал. Благодаря ему, протоны стремятся вернутся назад во внутрь.
|
||||
Последнее изменение этой страницы: 2017-02-21; просмотров: 404; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.214.175 (0.008 с.) |