Определение 13. Пятая нормальная форма 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Определение 13. Пятая нормальная форма



Отношение R находится в пятой нормальной форме (нормальной форме проекции-соединения - PJ/NF) в том и только в том случае, когда любая зависимость соединения в R следует из существования некоторого возможного ключа в R.

Введем следующие имена составных атрибутов:

СО = {СОТР_НОМЕР, ОТД_НОМЕР} СП = {СОТР_НОМЕР, ПРО_НОМЕР} ОП = {ОТД_НОМЕР, ПРО_НОМЕР}

Предположим, что в отношении СОТРУДНИКИ-ОТДЕЛЫ-ПРОЕКТЫ существует зависимость соединения:

* (СО, СП, ОП)

На примерах легко показать, что при вставках и удалениях кортежей могут возникнуть проблемы. Их можно устранить путем декомпозиции исходного отношения в три новых отношения:

СОТРУДНИКИ-ОТДЕЛЫ (СОТР_НОМЕР, ОТД_НОМЕР) СОТРУДНИКИ-ПРОЕКТЫ (СОТР_НОМЕР, ПРО_НОМЕР) ОТДЕЛЫ-ПРОЕКТЫ (ОТД_НОМЕР, ПРО_НОМЕР)

Пятая нормальная форма - это последняя нормальная форма, которую можно получить путем декомпозиции. Ее условия достаточно нетривиальны, и на практике 5NF не используется. Заметим, что зависимость соединения является обобщением как многозначной зависимости, так и функциональной зависимости.

 

Нормализация отношений. Приведение базы данных к нормализованному виду

 

Нормальная форма — свойство отношения в реляционной модели данных, характеризующее его с точки зрения избыточности, потенциально приводящей к логически ошибочным результатам выборки или изменения данных. Нормальная форма определяется как совокупность требований, которым должно удовлетворять отношение.

Процесс преобразования отношений базы данных к виду, отвечающему нормальным формам, называется нормализацией. Нормализация предназначена для приведения структуры БД к виду, обеспечивающему минимальную логическую избыточность, и не имеет целью уменьшение или увеличение производительности работы или же уменьшение или увеличение физического объёма базы данных.[1] Конечной целью нормализации является уменьшение потенциальной противоречивости хранимой в базе данных информации. Как отмечает К. Дейт,[2] общее назначение процесса нормализации заключается в следующем:

  • исключение некоторых типов избыточности;
  • устранение некоторых аномалий обновления;
  • разработка проекта базы данных, который является достаточно «качественным» представлением реального мира, интуитивно понятен и может служить хорошей основой для последующего расширения;
  • упрощение процедуры применения необходимых ограничений целостности.

Устранение избыточности производится, как правило, за счёт декомпозиции отношений таким образом, чтобы в каждом отношении хранились только первичные факты (то есть факты, не выводимые из других хранимых фактов).

При том, что идеи нормализации весьма полезны для проектирования баз данных, они отнюдь не являются универсальным или исчерпывающим средством повышения качества проекта БД. Это связано с тем, что существует слишком большое разнообразие возможных ошибок и недостатков в структуре БД, которые нормализацией не устраняются. Несмотря на эти рассуждения, теория нормализации является очень ценным достижением реляционной теории и практики, поскольку она даёт научно строгие и обоснованные критерии качества проекта БД и формальные методы для усовершенствования этого качества. Этим теория нормализации резко выделяется на фоне чисто эмпирических подходов к проектированию,[3] которые предлагаются в других моделях данных. Более того, можно утверждать, что во всей сфере информационных технологий практически отсутствуют методы оценки и улучшения проектных решений, сопоставимые с теорией нормализации реляционных баз данных по уровню формальной строгости.

Нормализацию иногда упрекают на том основании, что «это просто здравый смысл», а любой компетентный профессионал и сам «естественным образом» спроектирует полностью нормализованную БД без необходимости применять теорию зависимостей.[4] Однако, как указывает К. Дейт, нормализация в точности и является теми принципами здравого смысла, которыми руководствуется в своём сознании зрелый проектировщик, то есть принципы нормализации — это формализованный здравый смысл. Между тем, идентифицировать и формализовать принципы здравого смысла — весьма трудная задача, и успех в её решении является существенным достижением

Процесс проектирования БД с использованием метода нормальных форм является итерационным и заключается в последовательном переводе отношений из первой нормальной формы в нормальные формы более высокого порядка по определенным правилам. Каждая следующая нормальная форма ограничивает определенный тип функциональных зависимостей, устраняет соответствующие аномалии при выполнении операций над отношениями БД и сохраняет свойства предшествующих нормальных форм.

Выделяют следующую последовательность нормальных форм:

  • первая нормальная форма (1НФ);
  • вторая нормальная форма (2НФ);
  • третья нормальная форма (ЗНФ);
  • усиленная третья нормальная форма, или нормальная форма Бойса -Кодда (БКНФ);
  • четвертая нормальная форма (4НФ);
  • пятая нормальная форма (5НФ).

Первая нормальная форма. Отношение находится в 1НФ, если все его атрибуты являются простыми (имеют единственное значение).
Или: Таблица находится в первой нормальной форме (1НФ) тогда и только тогда, когда в любом допустимом значении этой таблицы каждая ее строка содержит только одно значение для каждого атрибута (столбца).

Исходное отношение строится таким образом, чтобы оно было в 1НФ.

Перевод отношения в следующую нормальную форму осуществляется методом «декомпозиции без потерь». Такая декомпозиция должна обеспечить то, что запросы (выборка данных по условию) к исходному отношению и к отношениям, получаемым в результате декомпозиции, дадут одинаковый результат.

Основной операцией метода является операция проекции. Поясним ее на примере. Предположим, что в отношении R(A,B,C,D,E,...) устранение функциональной зависимости С—>D позволит перевести его в следующую нормальную форму. Для решения этой задачи выполним декомпозицию отношения R на два новых отношения R1(A,B,C,E,...) и R2(C,D). Отношение R2 является проекцией отношения R на атрибуты С и D.

Исходное отношение ПРЕПОДАВАТЕЛЬ, используемое для иллюстрации метода, имеет составной ключ ФИО. Предм. Группа и находится в 1НФ, поскольку все его атрибуты простые.

В этом отношении в соответствии с рисунком

 

Ф.И.О. Должн Оклад Стаж Д_Стаж Коэф Предм Группа ВидЗан
Иванов И.М. преп         СУБД   Практ
Иванов И.М преп         ПЛ/1   Практ
Петров М.И. ст.преп         СУБД   Лекция
Петров М.И. ст.преп         ПАСКАЛЬ   Практ
Сидоров Н.Г. преп         ПЛ/1   Лекция
Сидоров Н.Г. преп         ПАСКАЛЬ   Лекция
Егоров В.В. преп         ПЭВМ   Лекция

можно выделить частичную зависимость атрибутов Стаж, Д_Стаж, Каф, Должн, Оклад от ключа - указанные атрибуты находятся в функциональной зависимости от атрибута ФИО, являющегося частью составного ключа.

а)
ФИО Оклад
ФИО Должн
ФИО Стаж
ФИО Д_Стаж
ФИО Каф
Стаж Д_Стаж
Должн Оклад
Оклад Должн
ФИО.Предм.Группа ВидЗан

б)


Рис.2. Зависимости между атрибутами

Эта частичная зависимость от ключа приводит к следующему:

1. В отношении присутствует явное и неявное избыточное дублирование данных, например:

  • повторение сведений о стаже, должности и окладе преподавателей, проводящих занятия в нескольких группах и/или по разным предметам;
  • повторение сведений об окладах для одной и той же должности или о надбавках за одинаковый стаж.

2. Следствием избыточного дублирования данных является проблема редактирования. Например, изменение должности у преподавателя Иванова И.М. потребует просмотра всех кортежей отношения и внесения изменений в те из них, которые содержат сведения о данном преподавателе.

Часть избыточности устраняется при переводе отношения в 2НФ.

Вторая нормальная форма. Отношение находится в 2НФ, если оно находится в 1НФ и каждый неключевой атрибут функционально полно зависит от первичного ключа (составного).
Или: Таблица находится во второй нормальной форме (2НФ), если она удовлетворяет определению 1НФ и все ее атрибуты (столбцы), не входящие в первичный ключ, связаны полной функциональной зависимостью с первичным ключом.

Для устранения частичной зависимости и перевода отношения в 2НФ необходимо, используя операцию проекции, разложить его на несколько отношений следующим образом:

построить проекцию без атрибутов, находящихся в частичной функциональной зависимости от первичного ключа;
• построить проекции на части составного первичного ключа и атрибуты, зависящие от этих частей.

В результате получим два отношения R1 и R2 в 2НФ (рис. 3).

а) R1

Ф.И.О. Предм Группа ВидЗан
Иванов И.М. СУБД   Практ
Иванов И.М ПЛ/1   Практ
Петров М.И. СУБД   Лекция
Петров М.И. ПАСКАЛЬ   Практ
Сидоров Н.Г. ПЛ/1   Лекция
Сидоров Н.Г. ПАСКАЛЬ   Лекция
Егоров В.В. ПЭВМ   Лекция

б) R2

Ф.И.О. Должн Оклад Стаж Д_Стаж Коэф
Иванов И.М. преп        
Петров М.И. ст.преп        
Сидоров Н.Г. преп        
Егоров В.В. преп        

a)

б)

Рис.3. Отношения БД в 2НФ

В отношении R1 первичный ключ является составным и состоит из атрибутов ФИО. Предм. Группа. Напомним, что данный ключ в отношении R1 получен в предположении, что каждый преподаватель в одной группе по одному предмету может либо читать лекции, либо проводить практические занятия. В отношении R2 ключ ФИО. Исследование отношений R1 и R2 показывает, что переход к 2НФ позволил исключить явную избыточность данных в таблице R2 - повторение строк со сведениями о преподавателях. В R2 по-прежнему имеет место неявное дублирование данных.

Для дальнейшего совершенствования отношения необходимо преобразовать его в ЗНФ.

Третья нормальная форма.

Определение 1. Отношение находится в ЗНФ, если оно находится в 2НФ и каждый неключевой атрибут нетранзитивно зависит от первичного ключа.
Существует и альтернативное определение.
Определение 2.
Отношение находится в ЗНФ в том и только в том случае, если все неключевые атрибуты отношения взаимно независимы и полностью зависят от первичного ключа.

Или: Таблица находится в третьей нормальной форме (ЗНФ), если она удовлетворяет определению 2НФ и ни один из ее неключевых атрибутов не связан функциональной зависимостью с любым другим неключевым атрибутом.

Доказать справедливость этого утверждения несложно. Действительно, то, что неключевые атрибуты полностью зависят от первичного ключа, означает, что данное отношение находится в форме 2НФ. Взаимная независимость атрибутов (определение приведено выше) означает отсутствие всякой зависимости между атрибутами отношения, в том числе и транзитивной зависимости между ними. Таким образом, второе определение ЗНФ сводится к первому определению.

Если в отношении R1 транзитивные зависимости отсутствуют, то в отношении R2 они есть:

ФИО—>Должн—>Оклад,
ФИО—>Оклад—>Должн,
ФИО—>Стаж—>Д_Стаж

Транзитивные зависимости также порождают избыточное дублирование информации в отношении. Устраним их. Для этого используя операцию проекции на атрибуты, являющиеся причиной транзитивных зависимостей, преобразуем отношение R2, получив при этом отношения R3, R4 и R5, каждое из которых находится в ЗНФ (рис. 4а). Графически эти отношения представлены на рис. 4 б. Заметим, что отношение R2 можно преобразовать по-другому, а именно: в отношении R3 вместо атрибута Должн взять атрибут Оклад.

а) R3

Ф.И.О. Должн Стаж Коэф
Иванов И.М. преп    
Петров М.И. ст.преп    
Сидоров Н.Г. преп    
Егоров В.В. преп    

R4

Должн Оклад
преп  
ст.преп  

R5

Стаж Д_Стаж
   
   
   

Рис. 4. Отношения БД в ЗНФ

На практике построение ЗНФ схем отношений в большинстве случаев является достаточным и приведением к ним процесс проектирования реляционной БД заканчивается. Действительно, приведение отношений к ЗНФ в нашем примере, привело к устранению избыточного дублирования.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-19; просмотров: 232; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.36.147 (0.028 с.)