Нагрев и охлаждение двигателей 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Нагрев и охлаждение двигателей



Процесс электромеханического преобразования энергии сопровождается одновременной потерей части энергии в самой машине, которая, преобразуясь в тепловую энергию, определяет нагрев её элементов. Мощность тепловых потерь определяется разностью между потреблённой двигателем электрической энергией и отдаваемой механической энергией на валу двигателя и зависит от конкретного режима преобразования энергии. Поэтому определение функции является одной из задач при оценке теплового состояния машины в конкретном режиме; второй задачей является оценка температуры двигателя .

Теория нагрева при решении задач электропривода базируется на следующих допущениях:

- двигатель рассматривается как однородное тело, имеющее бесконечную теплопроводность;

- теплоотдача во внешнюю среду пропорциональна первой степени разности температур двигателя и окружающей среды;

- температура охлаждающей среды постоянна.

При указанных допущениях уравнение баланса тепловой энергии в двигателе будет иметь следующий вид:

(6.1)

где – мощность тепловых потерь; А – теплоотдача; С – теплоёмкость двигателя; – превышение температуры двигателя над температурой окружающей среды, .

Переписав (6.1) в операторной форме

получим передаточную функцию, описывающую динамический характер изменения температуры двигателя:

(6.2)

где – коэффициент передачи; - постоянная времени нагрева.

На рис. 6.1 представлены кривые нагрева и охлаждения двигателя.

 

Рис. 6.1. Графики процессов нагрева и охлаждения двигателя

 

Значение постоянной времени нагрева в пределах одной серии может меняться от 10 мин до 2-3 часов в зависимости от габаритов двигателя.

Передаточная функция (6.2) справедлива, если параметры А и С остаются неизменными. У самовентилируемых двигателей теплоотдача зависит от скорости ротора и её характеризуют коэффициентом ухудшения теплоотдачи .

 

Классы применяемой изоляции

Применяемые при изготовлении машин материалы имеют определённую нагревостойкость, поэтому для любых режимов работы ЭМП должно соблюдаться условие, чтобы температура его частей не превосходила некоторого предельно допустимого значения. Предел нагрева электрической машины определяется допустимой температурой изоляционных материалов, которая в свою очередь устанавливается исходя из необходимого срока службы изоляции. В электромашиностроении применяется несколько классов изоляции, каждый из которых имеет определённую допустимую температуру нагрева (табл. 6.1).

 

Таблица 6.1

Классы нагревостойкости изоляции

Класс изоляции Основные компоненты Допустимая температура нагрева, оС
Y Волокнистые материалы из целлюлозы, хлопка, натурального шёлка  
А х/б ткани, пряжа, бумага, целлюлоза, шелк  
Е Синтетические органические материалы (плёнки, смолы и др.)  
В Слюда, асбест, стекловолокно, связующие органические  
F То же; связующие синтетические  
H То же; связующие кремнийорганические, кремнийорганические эластомеры  
С Слюда, керамика, кварц; связующие неорганические >180

 

Температура изоляции обмоток определяется не только уровнем внутренних тепловыделений, но и температурой окружающей среды. Принято указывать уровень допустимых тепловых потерь в электрической машине в расчёте на температуру среды, равную 40 оС, поэтому иногда оперируют понятием превышения температуры обмотки над температурой окружающей среды .

Максимальная температура обмоток электродвигателя, при которой можно эксплуатировать электродвигатель, зависит от класса изоляции электродвигателя. Класс изоляции электродвигателя указан на его бирке.

Классы изоляции определяются по стандартам, установленным Национальной Ассоциацией Производителей Электрооборудования (NEMA) для соответствия температуры двигателя требованиям, имеющим место в различных условиях окружающей среды. Сумма окружающей температуры 40°С и допустимой температуры нагрева дает максимальную температуру обмотки двигателя. Также допускается запас для точки в центре обмотки, где температура выше. Согласно тех же стандартов нормируются рекомендованные температуры обмоток (в абсолютной величине), при которых срок службы изоляции составит 20 000 часов. Превышение температуры изоляции на 10 градусов выше допустимой сокращает срок службы изоляции в два раза.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-16; просмотров: 198; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.23.101.60 (0.004 с.)