Непосредственный проверочный расчет корректности ЛВС 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Непосредственный проверочный расчет корректности ЛВС



Расчетный метод оценки конфигурации сети основан на известной методике [4] и включает в себя два раздела:

· расчет ЛВС на PDV;

· расчет ЛВС на PVV.

Для обеспечения соответствия требованиям IEEE 802.3 в сети должны одновременно выполняться 2 указанных ниже условия:

задержка детектирования коллизий -

продолжительность двойного пути («туда и обратно») между любыми двумя точками (PDV) не должна превышать 575 bt

межпакетный интервал -

cокращение межкадрового интервала PVVне должно превышать 49 bt

 

Расчет времени задержки детектирования коллизий (PDV)

Поскольку длина минимального пакета может составлять (с учетом преамбулы) 576 битов, время транспортировки пакета по самому длинному пути (PDV) не должно превышать 575 битов, чтобы можно было надежно детектировать коллизии. При расчете этого времени нужно принимать во внимание время распространения сигналов по кабелю и задержку, вносимую повторителями.

Значения задержек, вносимых элементами сети и используемых для расчета PDV, оговорены в стандарте IEEE 802.3 (см. таблицу 4).

Таблица 4 Значения задержек, вносимых элементами сети

Удвоенные задержки PDV (в битах)
Тип сегмента Левый край* Центр Правый край Задержка распространения на 1 м Максимальн. длина сегмента Максимальная задержка в сегменте
левом Прав. среднем
10Base-5 11.8 46.5 169.5 0.0866 500 м 55.1 89.8 212.8
10Base-2 11.8 46.5 169.5 0.1026 185 м 30.7 65.5 188.5
10Base-T 15.3 42.0 165.0 0.113 100 м 26.6 53.3 176.3
10Base-FB не определена 24.0 не определена 0.1000 2000 м не определена 224.0 не определена
10Base-FL 12.3 33.5 156.5 0.1000 2000 м 212,3 233.5 356.5
FOIRL 7.8 29.0 152.0 0.1000 1000 м 107.8 129.0 252.0
AUI 0 (> 2 м) 0 (> 2 м) 0 (> 2 м) 0.1026 2 - 48 метров 4.9 4.9  

 

*) Левым считается передающий конец сегмента, правым - приемный

Для расчета полной задержки следует сложить соответствующие значения:

(Левый край + задержка распространения * длина) + (центр + задержка распространения * длина) +...(центр + задержка распространения * длина) + (правый край + задержка распространения * длина) = PDV

Задержка распространения зависит от типа и длины кабеля, возрастая пропорционально последней.

Три правых колонки таблицы (максимальная задержка) содержат значения PDV, рассчитанные для сегментов максимальной длины с учетом базовой задержки (левые колонки). Максимальное допустимое значение PDV составляет 575 битов. Если крайние сегменты самого длинного пути различаются, нужно рассчитать PDV для обоих направлений и выбрать большее значение. При этом комитетIEEE 803.3 рекомендует предусмотреть запас в 4 битовых интервала.

Расчет сокращения межпакетного интервала (PVV)

Этот расчет показывает, насколько сократится интервал между 2 последовательными пакетами, переданными по самому длинному пути. Сокращение интервала определяется изменением длины пакета в левом и средних сегментах (в правом, приемном, межпакетный интервал уже не меняется).

Для путей с различными сегментами справа и слева нужно считать PVV для обоих направлений и выбирать большее значение (таблица 5). Максимальное значение PVV составляет 49 битов.

Таблица 5 Сокращение межкадрового интервала, вносимые элементами сети

Сокращение межпакетного интервала
Тип сегмента Передающий конец Промежуточный сегмент
Коаксиальный повторитель (10Base-5, 10Base-2)    
10Base-FB не определено  
10Base-FL 10.5  
Повторитель 10Base-T 10.5  

 

Полное сокращение межпакетного интервала равно сумме сокращений на отдельных сегментах пути:

Левый сегмент + промежуточный сегмент +... + промежуточный сегмент = PVV

Правила объединения рабочих групп

Рассмотрим правила проектирования ЛВС на базе "Правила 5-4-3" для сетей стандартов 10Base-2/T/F.

ПРИМЕРЫ СПОСОБОВ ОБЪЕДИНЕНИЯ РАБОЧИХ ГРУПП

Учитывая, что основная масса ЛВС сегодня проектируется с применением технологии 10Base-T, а все прочие используются лишь как вспомогательные, основное внимание уделяется решениям, осуществляющим объединение рабочих групп, построенных на базе или с применением UTP кабеля.


ПРИМЕРЫ ТОПОЛОГИЙ НА ОСНОВЕ СТАНДАРТА 10Base-T

Рисунок 8- Пример топологии без построения магистрали

В случае объединения рабочих групп по технологии 10Base-T допускается последовательное соединение до четырех концентраторов с применением кабеля на витой паре. В данной сети отсутствует магистраль (backbone). Это пример того, как не надо строить сети. Так можно проектировать лишь территориально рассредоточенные офисные ЛВС.


ПРИМЕР ИСПОЛЬЗОВАНИЯ МАГИСТРАЛИ СТАНДАРТА 10Base-2

 

Рисунок 9- Пример топологии с построением магистрали по технологии 10Base-2

В данном примере switch разделяет два сегмента магистрали, построенной с применением тонких коаксиальных кабелей. К верхнему сегменту подключены две цепочки концентраторов: два концентратора класса 10Base-2 и два концентратора класса 10Base-T.

Верхний сегмент содержит четыре повторителя (два класса 10Base-T и два 10Base-2). Тем самым между РС-1 и РС-2 имеются пять кабельных сегментов (три сегмента тонкого коаксиального кабеля и два сегмента кабеля с витыми парами). Три тонких коаксиальных сегмента - это максимально допустимое число между двумя узлами.

Нижний сегмент магистрали 10Base-2, содержит три последовательно соединенных концентратора класса 10Base-T. В результате между узлами РС-3 и РС-4 воображаемый сигнал проходит через три концентратора класса 10Base-T, затем на пути данных встречается коммутатор, и счет концентраторов, а так же кабельных сегментов начинается сначала. Затем данные проходят через два концентратора 10Base-T. Если бы на пути данных не было коммутатора, то тогда между этими узлами насчитывалось бы пять повторителей. Это было бы нарушением правила “максимум четыре повторителя”.

Лучше всего подключать концентраторы к тонкой коаксиальной магистрали таким образом, чтобы их никогда не было более двух в цепочке. В этом случае правило “четырех концентраторов” никогда не будет нарушено, даже если Вы, торопясь, по ошибке не верно сконфигурируете свою сеть на кроссовой панели.

ПРИМЕР ИСКЛЮЧЕНИЯ ИЗ ПРАВИЛА “5-4-3”


Рисунок 10- Пример гибридной топологии с применением тонкого коаксиального, UTP и FO кабелей

Этот пример демонстрирует особенности, которые появляются при внедрении оптических технологий: применение FO кабельных систем позволяет увеличить длины кабельных сегментов (до 2000 м), возрастает безопасность (несанкционированное подключение к оптическому) и помехоустойчивость (FO кабели связи не восприимчивы к внешним электромагнитным излучениям и не излучают сами).

Рассматривая этот пример, необходимо помнить, что соединение разнотипных по передающим средам устройств осуществляется с помощью специальных конвертеров.

В данном случае к магистрали 10Base-2 подключены: концентратор класса 10Base-2 и FO концентратор (на практике подобное соединение возможно для подключения рабочих групп, находящихся в условиях наличия сильных помех).

Между РС-1 и РС-2 имеются четыре повторителя. В то же время, между РС-3 и РС-4 пять повторителей (10Base-2 Hub, 10Base-T Hub и три оптоволоконных). Эта конфигурация представляет собой исключение из правила “четырех повторителей”: когда один или несколько оптоволоконных концентраторов применяются вместе с концентраторами “на меди”, то на пути между двумя узлами допускается использовать пять повторителей.

ПРИМЕР ПРИМЕНЕНИЯ ТРЕХ ТИПОВ КАБЕЛЕЙ

Рисунок 11- Пример применения гибридной топологии

На этом примере также демонстрируется совместное применение в рамках одной рабочей группы трех типов кабелей: оптоволоконного, тонкого коаксиального и кабеля с витыми парами.

В данном случае также стоит помнить, что соединение разнотипных по передающим средам устройств осуществляется с помощью конвертеров сред.

На пути связи от РС-1 до РС-2 расположены четыре концентратора (два устройства типа 10Base-T и два типа 10Base-2). При этом между РС-1 и РС-2 лежат пять кабельных сегментов: один с витыми парами, три тонких коаксиальных и один оптоволоконный. Тем самым правило “не более трех тонких коаксиальных сегментов” выполнено. На пути распространения сигнала между узлами РС-2 и РС-3 расположены два концентратора 10Base-2 и три сегмента тонкого коаксиального кабеля, тем самым также не нарушается ни один из пунктов правила 4-3-2.



Поделиться:


Последнее изменение этой страницы: 2017-02-10; просмотров: 278; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.1.232 (0.009 с.)