Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Роль модели и адекватность модели↑ ⇐ ПредыдущаяСтр 6 из 6 Содержание книги
Поиск на нашем сайте
Построив модель, исследователь может:
Поскольку модель является выражением конечного ряда и только важнейших для конкретного исследования аспектов сущности, то она не может быть абсолютно идентичной моделируемому объекту. Кроме этого, реальный объект бесконечен для познания. Поэтому нет смысла стремиться к бесконечной точности при построении модели. Для выяснения необходимой степени адекватности обычно строят ряд моделей, начиная с грубых, простых моделей и двигаясь ко все более сложным и точным. Как только затраты на построение очередной модели начинают превышать планируемую отдачу от модели, то уточнение модели прекращают. Первоначальные шаги производятся в каком-либо существующем универсальном моделирующем пакете. После одобрения модели под неё пишется специализированный пакет. Необходимость в этом возникает в случае, если функционирование модели в универсальной среде моделирования не удовлетворяет требованиям быстродействия (или каким-то другим). Моделирование — прикладная инженерная наука класса технологических. Моделирование — дисциплина, ставящая целью построение моделей и их исследование посредством собственных универсальных методов, а также специфических методов смежных с ней наук (математика, исследование операций, программирование). Физические(материальные) и математические модели. Физические модели В основу классификации положена степень абстрагирования модели от оригинала. Предварительно все модели можно подразделить на две группы: материальные (физические) и абстрактные (математические) (рис. 9.1). Физической моделью обычно называют систему, которая эквивалентна или подобна оригиналу, либо у которой процесс функционирования такой же, как у оригинала, и имеет ту же или другую физическую природу. Можно выделить следующие виды физических моделей: натурные, квазинатурные, масштабные и аналоговые. Натурные модели – это реальные исследуемые системы. Их называют макетами и опытными образцами. Натурные модели имеют полную адекватность с системой-оригиналом, что обеспечивает высокую точность и достоверность результатов моделирования. Процесс проектирования систем завершается зачастую испытанием опытных образцов.
Рис. 9.1. Классификация моделей Квазинатурные модели представляют собой совокупность натурных и математических моделей [4]. Этот вид моделей используется в случаях, когда математическая модель части системы не является удовлетворительной (например, модель человека-оператора) или когда часть системы должна быть исследована во взаимодействии с остальными частями, но их еще не существует, либо их включение в модель затруднено или дорого. Примерами квазинатурных моделей могут служить вычислительные полигоны, на которых отрабатывается программное обеспечение различных систем, или реальные АСУ, исследуемые совместно с математическими моделями соответствующих производств [5 Масштабная модель – это система той же физической природы, что и оригинал, но отличающаяся от него масштабами. Методологической основой масштабного моделирования является теория подобия, которая предусматривает соблюдение геометрического подобия оригинала и модели и соответствующих масштабов для их параметров. При проектировании систем масштабные модели могут использоваться для анализа вариантов компоновочных решений по конструкции системы и ее элементов. Аналоговыми моделями называются системы, имеющие физическую природу, отличающуюся от оригинала, но сходные с оригиналом процессы функционирования. Обязательным условием при этом является однозначное соответствие между параметрами изучаемого объекта и его модели, а также тождественность безразмерных математических описаний процессов, протекающих в них. Для создания аналоговой модели требуется наличие математического описания изучаемой системы. Аналоговые модели используют при исследовании средств вычислительной техники на уровне логических элементов и электрических цепей, а также на системном уровне, когда функционирование системы описывается, например, дифференциальными или алгебраическими уравнениями. Математические модели Математическая модель представляет собой формализованное описание системы с помощью абстрактного языка, в частности, с помощью математических соотношений, отражающих процесс функционирования системы. Для составления модели можно использовать любые математические средства – алгебраическое, дифференциальное и интегральное исчисление, теорию множеств, теорию алгоритмов и т.д. По существу, вся математика создана для составления и исследования моделей объектов или процессов. Цели моделирования и характерные черты оригинала определяют, в конечном счете, ряд других особенностей моделей и методы их исследования. Например, математические модели можно классифицировать на детерминированные и вероятностные (стохастические). Первые устанавливают однозначное соответствие между параметрами и характеристиками модели, а вторые – между статистическими значениями этих величин. Выбор того или иного вида модели обусловлен степенью необходимости учета случайных факторов. Среди математических моделей можно выделить по методу их исследования аналитические, численные и имитационные модели. Аналитической моделью называется такое формализованное описание системы, которое позволяет получить решение уравнения в явном виде, используя известный математический аппарат. Численная модель характеризуется зависимостью такого вида, который допускает только частные численные решения для конкретных начальных условий и количественных параметров модели. Имитационная модель – это совокупность описания системы и внешних воздействий, алгоритмов функционирования системы или правил изменения состояния системы под влиянием внешних и внутренних возмущений. Эти алгоритмы и правила не дают возможности использовать имеющиеся математические методы аналитического и численного решения, но позволяют имитировать процесс функционирования системы и производить измерения интересующих характеристик. Имитационные модели могут быть созданы для гораздо более широкого класса объектов и процессов, чем аналитические и численные модели. Поскольку для реализации имитационных моделей используются, как правило, вычислительные системы, средствами формализованного описания имитационных моделей служат, зачастую, универсальные или специальные алгоритмические языки.
Выбор метода моделирования Аналитические методы Разработанная математическая модель функционирования системы может быть исследована различными методами – аналитическими или имитационными. С помощью аналитических методов анализа можно провести наиболее полное исследование модели. Для использования аналитических методов необходимо математическую модель преобразовать к виду явных аналитических зависимостей между характеристиками и параметрами системы и внешних воздействий. Однако это удается лишь для сравнительно простых систем. Применение аналитических методов для более сложных систем связано с большей, по сравнению с другими методами, степенью упрощения реальности и абстрагирования. Поэтому аналитические методы исследования используются обычно для первоначальной грубой оценки характеристик всей системы или отдельных ее подсистем, а также на ранних стадиях проектирования систем, когда недостаточно информации для построения более точной модели. Имитационные методы Имитационное моделирование является наиболее универсальным методом исследования систем и количественной оценки характеристик их функционирования. При имитационном моделировании динамические процессы системы-оригинала подменяются процессами, имитируемыми в абстрактной модели, но с соблюдением таких же соотношений длительностей и временных последовательностей отдельных операций. Поэтому метод имитационного моделирования мог бы называться алгоритмическим или операционным. В процессе имитации, как при эксперименте с оригиналом, фиксируют определенные события и состояния или измеряют выходные воздействия, по которым вычисляют характеристики качества функционирования системы. Имитационное моделирование позволяет рассматривать процессы, происходящие в системе, практически на любом уровне детализации. Используя алгоритмические возможности ПК, в имитационной модели можно реализовать любой алгоритм управления или функционирования системы. Численные методы Численное моделирование допускает только частные численные решения для конкретных начальных условий и количественных параметров модели. Модели, которые допускают исследование аналитическими методами, также могут анализироваться имитационными методами. Все это является причиной того, что имитационные методы моделирования становятся основными методами исследования сложных систем. Методы имитационного моделирования различаются в зависимости от класса исследуемых систем, способа продвижения модельного времени и вида количественных переменных параметров системы и внешних воздействий. В первую очередь можно разделить методы имитационного моделирования дискретных и непрерывных систем. Если все элементы системы имеют конечное множество состояний, и переход из одного состояния в другое осуществляется мгновенно, то такая система относится к системам с дискретным изменением состояний, или дискретным системам. Если переменные всех элементов системы изменяются постепенно и могут принимать бесконечное множество значений, то такая система называется системой с непрерывным изменением состояний, или непрерывной системой. Системы, у которых имеются переменные того и другого типа, считаются дискретно-непрерывными. Особое значение имеет стационарность или нестационарность случайных, независимых переменных системы и внешних воздействий. При нестационарном характере переменных, в первую очередь внешних воздействий, что часто наблюдается на практике, должны быть использованы специальные методы моделирования, в частности, метод повторных экспериментов. Еще одним классификационным параметром следует считать схему формализации, принятую при создании математической модели. Здесь, прежде всего, необходимо разделить методы, ориентированные на алгоритмический (программный) или структурный (агрегатный) подход. В первом случае процессы управляют элементами (ресурсами) системы, а во втором – элементы управляют процессами, определяют порядок функционирования системы.
|
||||
Последнее изменение этой страницы: 2017-02-08; просмотров: 208; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.76.174 (0.011 с.) |