Б. Структура дезоксирибонуклеиновой кислоты (днк) 
";


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Б. Структура дезоксирибонуклеиновой кислоты (днк)



Первичная структура ДНК — порядок чере­дования дезоксирибонуклеозидмонофосфатов (дНМФ) в полинуклеотидной цепи.

Каждая фосфатная группа в полинуклеотидной цепи, за исключением фосфорного остатка 5'-конце молекулы, участвует в образовании двух эфирных связей с участием 3'- и 5'-углеродных атомов двух соседних дезоксирибоз, поэтому связь между мономерами обозначают 3′, 5′-фосфодиэфирной.

Концевые нуклеотиды ДНК различают по структуре: на 5'-конце находится фосфатная группа на 3'-конце цепи — свободная ОН-группа. Эти концы называют 5'- и 3'-концами. Линейная последовательность дезоксирибонуклеотидов в полимерной цепи ДНК обычно сокращённо записывают с помощью однобуквенного кода, пример -A-G-C-T-T-A-C-A- от 5'- к 3'-концу.

В каждом мономере нуклеиновой кислоты присутствует остаток фосфорной кислоты, При pH 7 фосфатная группа полностью ионизирована, поэтому in vivo нуклеиновые кислоты существуют в виде полианионов (имеют множественный отрицательный заряд). Остатки пентоз тоже проявляют гидрофильные свойства, остистые основания почти нерастворимы в воде, но некоторые атомы пуринового и пиримидинового циклов способны образовывать водородные связи.

Вторичная структура ДНК. В 1953 г. Дж. Уот­соном и Ф. Криком была предложена модель пространственной структуры ДНК. Согласно этой модели, молекула ДНК имеет форму спи­рали, образованную двумя полинуклеотидными цепями, закрученными относительно друг друга и вокруг общей оси. Двойная спираль правозакрученная, полинуклеотидные цепи в ней антипараллельны (рис. 4-6), т.е. если одна из них ориентирована в направлении 3'→5', то вторая — в направлении 5'→3'. Поэтому на каждом из концов молекулы ДНК расположены 5'-конец одной цепи и 3'-конец другой цепи.

Все основания цепей ДНК расположены внутри двойной спирали, а пентозофосфатный остов — снаружи. Полинуклеотидные цепи удерживаются относительно друг друга за счёт водородных связей между комплементарными пуриновыми и пиримидиновыми азотистыми основаниями А и Т (две связи) и между G и С (три связи) (рис. 4-7). При таком сочетании каждая пара содержит по три кольца, поэтому общий размер этих пар оснований одинаков по всей длине молекулы. Водородные связи при других сочетаниях оснований в паре возможны, но они значительно слабее. Последовательность нуклеотидов одной цепи полностью комплемен­тарна последовательности нуклеотидов второй цепи. Поэтому, согласно правилу Чаргаффа (Эр­вин Чаргафф в 1951 г. установил закономернос­ти в соотношении пуриновых и пиримидиновых оснований в молекуле ДНК), число пуриновых оснований (А + G) равно числу пиримидиновых оснований (Т + С).

Комплементарые основания уложены в стоп­ку в сердцевине спирали. Между основаниями двухцепочечной молекулы в стопке возникают гидрофобные взаимодействия, стабилизирующие двойную спираль.

Такая структура исключает контакт азотис­тых остатков с водой, но стопка оснований не может быть абсолютно вертикальной. Пары оснований слегка смещены относительно друг друга. В образованной структуре различают две бороздки — большую, шириной 2,2 нм, и малую, шириной 1,2 нм. Азотистые основания в области большой и малой бороздок взаимодействуют со специфическими белками, участвующими в организации структуры хроматина.

Третичная структура ДНК

(суперспирализация ДНК)

Каждая молекула ДНК упакована в отдельную хромосому. В диплоидных клетках человека со­держится 46 хромосом. Общая длина ДНК всех хромосом клетки составляет 1,74 м, но она упа­кована в ядре, диаметр которого в миллионы раз меньше. Чтобы расположить ДНК в ядре клетки, должна быть сформирована очень компактная структура. Компактизация и суперспирализация ДНК осуществляются с помощью разнообраз­ных белков, взаимодействующих с определённы­ми последовательностями в структуре ДНК. Все связывающиеся с ДНК эукариотов белки можно разделить на 2 группы: гистоновые и негистоновые белки. Комплекс белков с ядерной ДНК клеток называют хроматином.

Гистоны — белки с молекулярной массой 11—21 кД, содержащие много остатков аргинина и лизина. Благодаря положительному заряду гистоны образуют ионные связи с отрицательно заряженными фосфатными группами, располо­женными на внешней стороне двойной спирали ДНК.

Существует 5 типов гистонов. Четыре гистона Н2А, Н2В, НЗ и Н4 образуют октамерный белковый комплекс (Н2А, Н2В, НЗ, Н4)2, ко­торый называют «нуклеосомный кор» (от англ. nucleosome core). Молекула ДНК «накручивается» на поверхность гистонового октамера, совершая 1,75 оборота (около 146 пар нуклеотидов). Такой комплекс гистоновых белков с ДНК служит основной структурной единицей хроматина, её называют «нуклеосома». ДНК, связывающую нуклеосомные частицы, называют линкерной ДНК. В среднем линкерная ДНК составляет 60 пар нуклеотидных остатков. Молекулы гистона Н1 связываются с ДНК в межнуклеосомных участках (линкерных последовательностях) и защищают эти участки от действия нуклеаз рис. 4-8).

В ядре каждой клетки присутствует около 60 млн молекул каждого типа гистонов, а общая масса гистонов примерно равна содержанию ДНК. Аминокислотные остатки лизина, аргинина и концевые аминогруппы гистонов могут модифицироваться: ацетилироваться, фосфорилироваться, метилироваться или взаимодейс­твовать с белком убиквитином (негистоновый белок). Модификации бывают обратимыми и необратимыми, они изменяют заряд и конформацию гистонов, а это влияет на взаимодействие гистонов между собой и с ДНК.

Активность ферментов, ответственных замодификации, регулируется и зависит от стадии клеточного цикла. Модификации делают возможными конформационные перестройки хроматина.



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 52; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.196.182 (0.005 с.)