Роль контрольных точек в восстановлении после мягкого сбоя 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Роль контрольных точек в восстановлении после мягкого сбоя



Мягкий сбой системы (аварийный отказ программного обеспечения). Мягкий сбой характеризуется утратой оперативной памяти системы. При этом поражаются все выполняющиеся в момент сбоя транзакции, теряется содержимое всех буферов базы данных. Данные, хранящиеся на диске, остаются неповрежденными. Мягкий сбой может произойти, например, в результате аварийного отключения электрического питания или в результате неустранимого сбоя процессора. Как и страницы базы данных, данные из журнала транзакций не записываются сразу на диск, а предварительно буферизируются в оперативной памяти. Таким образом, система поддерживает два вида буферов - буферы страниц базы данных и буферы журнала транзакций.Страницы базы данных, содержимое которых в буфере (в оперативной памяти) отличается от содержимого на диске, называются "грязными" (dirty) страницами. Система постоянно поддерживает список "грязных" страниц - dirty-список. Запись "грязных" страниц из буфера на диск называется выталкиванием страниц во внешнюю память. Очевидно, необходимо предусмотреть такие правила выталкивания буферов базы данных и буферов журнала транзакций, которые обеспечивали бы два требования: 1. Максимальную скорость выполнения транзакций. Для этого необходимо выталкивать страницы как можно реже. В идеале, если оперативная память была бы бесконечной, и сбои никогда бы не происходили, наилучшим выходом была бы загрузка всей базы данных в оперативную память, работа с данными только в оперативной памяти, и запись измененных страниц на диск только в момент завершения работы всей системы. 2.Гарантию, что при возникновении сбоя (любого типа), данные завершенных транзакций можно было бы восстановить, а данные незавершенных транзакций бесследно удалить, т.е. обеспечение восстановления последнего согласованного состояния базы данных. Для этого что-то выталкивать на диск все-таки необходимо, даже если мы обладали бы бесконечной оперативной памятью.Таким образом, имеется две причины для периодического выталкивания страниц во внешнюю память - недостаток оперативной памяти и возможность сбоев. Основным принципом согласованной политики выталкивания буфера журнала и буферов страниц базы данных является то, что запись об изменении объекта базы данных должна попадать во внешнюю память журнала раньше, чем измененный объект оказывается во внешней памяти базы данных. Соответствующий протокол журнализации (и управления буферизацией) называется Write Ahead Log (WAL) - " пиши сначала в журнал ", и состоит в том, что если требуется вытолкнуть во внешнюю память измененный объект базы данных, то перед этим нужно гарантировать выталкивание во внешнюю память журнала записи о его изменении. Это означает, что если во внешней памяти базы данных содержится объект, к которому применена некоторая команда модификации, то во внешней памяти журнала транзакций содержится запись об этой операции. Обратное неверно - если во внешней памяти журнала содержится запись о некотором изменении объекта, то во внешней памяти базы данных может и не быть самого измененного объекта. Дополнительное условие на выталкивание буферов накладывается тем требованием, что каждая успешно завершившаяся транзакция должна быть реально зафиксирована во внешней памяти. Какой бы сбой не произошел, система должна быть в состоянии восстановить состояние базы данных, содержащее результаты всех зафиксированных к моменту сбоя транзакций. Третьим условием выталкивания буферов является ограниченность объемов буферов базы данных и журнала транзакций. Периодически или при наступлении определенного события (например, количество страниц в dirty-списке превысило определенный порог, или количество свободных страниц в буфере уменьшилось и достигло критического значения) система принимает так называемую контрольную точку. Принятие контрольной точки включает выталкивание во внешнюю память содержимого буферов базы данных и специальную физическую запись контрольной точки, которая представляет собой список всех осуществляемых в данный момент транзакций.Оказывается, что минимальным требованием, гарантирующим возможность восстановления последнего согласованного состояния базы данных, является выталкивание при фиксации транзакции во внешнюю память журнала всех записей об изменении базы данных этой транзакцией. При этом последней записью в журнал, производимой от имени данной транзакции, является специальная запись о конце этой транзакции. 38)Что такое «фиктивные элементы (фантомы)», когда они возникают, метод борьбы с ними. Фиктивные элементы (фантомы)
Эффект фиктивных элементов несколько отличается от предыдущих транзакций тем, что здесь за один шаг выполняется достаточно много операций - чтение одновременно нескольких строк, удовлетворяющих некоторому условию.Транзакция A дважды выполняет выборку строк с одним и тем же условием. Между выборками вклинивается транзакция B, которая добавляет новую строку, удовлетворяющую условию отбора. Итак, при использовании протокола доступа к данным с использованием блокировок часть проблем разрешилось (не все), но возникла новая проблема - тупики: 1.Проблема потери результатов обновления - возник тупик. 2.Проблема незафиксированной зависимости (чтение "грязных" данных, неаккуратное считывание) - проблема разрешилась. 3.Неповторяемое считывание - проблема разрешилась. 4.Появление фиктивных элементов - проблема не разрешилась. 5Проблема несовместимого анализа - возник тупик. Т.к. нормального выхода из тупиковой ситуации нет, то такую ситуацию необходимо распознавать и устранять. Методом разрешения тупиковой ситуации является откат одной из транзакций (транзакции-жертвы) так, чтобы другие транзакции продолжили свою работу. После разрешения тупика, транзакцию, выбранную в качестве жертвы можно повторить заново. Можно представить два принципиальных подхода к обнаружению тупиковой ситуации и выбору транзакции-жертвы: 1.СУБД не следит за возникновением тупиков. Транзакции сами принимают решение, быть ли им жертвой. 2.За возникновением тупиковой ситуации следит сама СУБД, она же принимает решение, какой транзакцией пожертвовать. Первый подход характерен для так называемых настольных СУБД (FoxPro и т.п.). Этот метод является более простым и не требует дополнительных ресурсов системы. Для транзакций задается время ожидания (или число попыток), в течение которого транзакция пытается установить нужную блокировку. Если за указанное время (или после указанного числа попыток) блокировка не завершается успешно, то транзакция откатывается (или генерируется ошибочная ситуация). За простоту этого метода приходится платить тем, что транзакции-жертвы выбираются, вообще говоря, случайным образом. В результате из-за одной простой транзакции может откатиться очень дорогая транзакция, на выполнение которой уже потрачено много времени и ресурсов системы.Второй способ характерен для промышленных СУБД (ORACLE, MS SQL Server и т.п.). В этом случае система сама следит за возникновением ситуации тупика, путем построения (или постоянного поддержания) графа ожидания транзакций. Граф ожидания транзакций - это ориентированный двудольный граф, в котором существует два типа вершин - вершины, соответствующие транзакциям, и вершины, соответствующие объектам захвата. Ситуация тупика возникает, если в графе ожидания транзакций имеется хотя бы один цикл. Одну из транзакций, попавших в цикл, необходимо откатить, причем, система сама может выбрать эту транзакцию в соответствии с некоторыми стоимостными соображениями (например, самую короткую, или с минимальным приоритетом и т.п.). Преднамеренные блокировки Как видно из анализа поведения транзакций, при использовании протокола доступа к данным не решается проблема фантомов. Это происходит оттого, что были рассмотрены только блокировки на уровне строк. Можно рассматривать блокировки и других объектов базы данных:1.Блокировка самой базы данных. 2.Блокировка файлов базы данных.3.Блокировка таблиц базы данных. 4.Блокировка страниц (Единиц обмена с диском, обычно 2-16 Кб. На одной странице содержится несколько строк одной или нескольких таблиц). 5.Блокировка отдельных строк таблиц. 6.Блокировка отдельных полей.Кроме того, можно блокировать индексы, заголовки таблиц или другие объекты.

Чем крупнее объект блокировки, тем меньше возможностей для параллельной работы. Достоинством блокировок крупных объектов является уменьшение накладных расходов системы и решение проблем, не решаемых с использованием блокировок менее крупных объектов. Например, использование монопольной блокировки на уровне таблицы, очевидно, решает проблему фантомов. Современные СУБД, как правило, поддерживают минимальный уровень блокировки на уровне строк или страниц. (В старых версиях настольной СУБД Paradox поддерживалась блокировка на уровне отдельных полей.). При использовании блокировок объектов разной величины возникает проблема обнаружения уже наложенных блокировок. Если транзакция A пытается заблокировать таблицу, то необходимо иметь информацию, не наложены ли уже блокировки на уровне строк этой таблицы, несовместимые с блокировкой таблицы. Для решения этой проблемы используется протокол преднамеренных блокировок, являющийся расширением протокола доступа к данным. Суть этого протокола в том, что перед тем, как наложить блокировку на объект (например, на строку таблицы), необходимо наложить специальную преднамеренную блокировку (блокировку намерения) на объекты, в состав которых входит блокируемый объект - на таблицу, содержащую строку, на файл, содержащий таблицу, на базу данных, содержащую файл. Тогда наличие преднамеренной блокировки таблицы будет свидетельствовать о наличии блокировки строк таблицы и для другой транзакции, пытающейся блокировать целую таблицу не нужно проверять наличие блокировок отдельных строк. Более точно, вводятся следующие новые типы блокировок: 1. Преднамеренная блокировка с возможностью взаимного доступа (IS-блокировка - Intent Shared lock). Накладывается на некоторый составной объект T и означает намерение блокировать некоторый входящий в T объект в режиме S-блокировки. Например, при намерении читать строки из таблицы T, эта таблица должна быть заблокирована в режиме IS (до этого в таком же режиме должен быть заблокирован файл). 2. Преднамеренная блокировка без взаимного доступа (IX-блокировка - Intent eXclusive lock). Накладывается на некоторый составной объект T и означает намерение блокировать некоторый входящий в T объект в режиме X-блокировки. Например, при намерении удалять или модифицировать строки из таблицы T эта таблица должна быть заблокирована в режиме IX (до этого в таком же режиме должен быть заблокирован файл).3. Преднамеренная блокировка как с возможностью взаимного доступа, так и без него (SIX-блокировка - Shared Intent eXclusive lock). Накладывается на некоторый составной объект T и означает разделяемую блокировку всего этого объекта с намерением впоследствии блокировать какие-либо входящие в него объекты в режиме X-блокировок. Например, если выполняется длинная операция просмотра таблицы с возможностью удаления некоторых просматриваемых строк, то можно заблокировать эту таблицу в режиме SIX (до этого захватить файл в режиме IS). Более точная формулировка протокола преднамеренных блокировок для доступа к данным выглядит следующим образом: 1.При задании X-блокировки для сложного объекта неявным образом задается X-блокировка для всех дочерних объектов этого объекта. 2.При задании S- или SIX-блокировки для сложного объекта неявным образом задается S-блокировка для всех дочерних объектов этого объекта. 3.Прежде чем транзакция наложит S- или IS-блокировку на заданный объект, она должна задать IS-блокировку (или более сильную) по крайней мере для одного родительского объекта этого объекта. 4.Прежде чем транзакция наложит X-, IX- или SIX-блокировку на заданный объект, она должна задать IX-блокировку (или более сильную) для всех родительских объектов этого объекта. 5.Прежде чем для данной транзакции будет отменена блокировка для данного объекта, должны быть отменены все блокировки для дочерних объектов этого объекта. 6.Замечание. Протокол преднамеренных блокировок не определяет однозначно, какие блокировки должны быть наложены на родительский объект при блокировании дочернего объекта. Например, при намерении задать S-блокировку строки таблицы, на таблицу, включающую эту строку, можно наложить любую из блокировок типа IS, S, IX, SIX, X. При намерении задать X-блокировку строки, на таблицу можно наложить любую из блокировок типа IX, SIX, X. 1.Посмотрим, как разрешается проблема фиктивных элементов (фантомов) с использованием протокола преднамеренных блокировок для доступа к данным. 2.Транзакция A дважды выполняет выборку строк с одним и тем же условием. Между выборками вклинивается транзакция B, которая добавляет новую строку, удовлетворяющую условию отбора.3.Транзакция B перед попыткой вставить новую строку должна наложить на таблицу IX-блокировку, или более сильную (SIX или X). Тогда транзакция A, для предотвращения возможного конфликта, должна наложить такую блокировку на таблицу, которая не позволила бы транзакции B наложить IX-блокировку. По таблице совместимости блокировок определяем, что транзакция A должна наложить на таблицу S, или SIX, или X-блокировку. (Блокировки IS недостаточно, т.к. эта блокировка позволяет транзакции B наложить IX-блокировку для последующей вставки строк). 1.Результат. Проблема фиктивных элементов (фантомов) решается, если транзакция A использует преднамеренную S-блокировку или более сильную. 2.Замечание. Т.к. транзакция A собирается только читать строки таблицы, то минимально необходимым условием в соответствии с протоколом преднамеренных блокировок является преднамеренная IS-блокировка таблицы. Однако этот тип блокировки не предотвращает появление фантомов. Таким образом, транзакцию A можно запускать с разными уровнями изолированности - предотвращая или допуская появление фантомов. Причем, оба способа запуска соответствуют протоколу преднамеренных блокировок для доступа к данным. 39)Потеря результатов обновления.
Две транзакции по очереди записывают некоторые данные в одну и ту же строку и фиксируют изменения. Обе транзакции успешно накладывают S-блокировки и читают объект . Транзакция A пытается наложить X-блокирокировку для обновления объекта . Блокировка отвергается, т.к. объект уже S-заблокирован транзакцией B. Транзакция A переходит в состояние ожидания до тех пор, пока транзакция B не освободит объект. Транзакция B, в свою очередь, пытается наложить X-блокирокировку для обновления объекта . Блокировка отвергается, т.к. объект уже S-заблокирован транзакцией A. Транзакция B переходит в состояние ожидания до тех пор, пока транзакция A не освободит объект. Результат. Обе транзакции ожидают друг друга и не могут продолжаться. Возникла ситуация тупика

40)Свойство «Изолированность» транзакции Транзакции имеют следующие свойства, которые известны под аббревиатурой ACID: ♦ атомарность (Atomicity); ♦ согласованность (Consistency); ♦ изолированность (Isolation); ♦ устойчивость (Durability). Свойство изолированности разделяет все одновременно выполняющиеся транзакции. Другими словами, ни одна активная транзакция не может видеть изменения данных, выполненные в параллельной, но не завершенной транзакции. Это означает, что для обеспечения изолированности для некоторых транзакций может быть выполнен откат.

41)Основные операции при анализе данных в OLAP – системах Концептуальное многомерное представление (Multi-Dimensional Conceptual View) Многомерная концептуальная схема или пользовательское представление облегчают моделирование и анализ так же, впрочем, как и вычисления. Концептуальное представление модели данных должно позволять аналитикам выполнять интуитивные операции анализа «вдоль и поперек» (slice and dice), вращения (rotate) и размещения (pivot) направлений консолидации. Прозрачность (Transparency)Пользователь не должен знать о том, какие средства используются для хранения и обработки данных, как данные организованы и откуда берутся. Вне зависимости от того, является OLAP-продукт частью средств пользователя или нет, факт должен быть прозрачен пользователю. Доступность (Accessibility)Пользователь-аналитик OLAP должен иметь возможность выполнять анализ, базирующийся на общей концептуальной схеме, содержащей данные всего предприятия в реляционной БД, также как и данные из старых наследуемых БД, на общих методах доступа и на общей аналитической модели. Это значит, что OLAP должен предоставлять свою собственную логическую схему для доступа в гетерогенной среде БД и выполнять соответствующие преобразования, требующиеся для обеспечения единого, согласованного и целостного взгляда пользователя на информацию. Постоянная производительность при разработке отчетов (Consistent Reporting Performance)Устойчивая производительность необходима для поддержания простоты использования и свободы от усложнений, требуемых для доведения OLAP до конечного пользователя, Для которого критичной является постоянная производительность, и поддержание легкости в использовании и ограничения сложности OLAP Клиент-серверная архитектура (Client-Server Architecture)OLAP-продукты должны работать в среде клиент-сервер. Поэтому представляется необходимым, чтобы серверный компонент аналитического инструмента был настолько "интеллектуальным" и обладал способностью строить общую концептуальную схему на основе обобщения и консолидации различных логических и физических схем корпоративных БД для обеспечения эффекта прозрачности Также необходимо чтобы различные клиенты могли присоединяться к серверу с минимальными затруднениями и интеграционным программированием. Общая многомерностьКаждое измерение должно применяться безотносительно своей структуры и операционных способностей. Дополнительные операционные способности могут предоставляться выбранным измерениям, и, поскольку измерения симметричны, отдельно взятая функция может быть предоставлена любому измерению. Базовые структуры данных, формулы и форматы отчетов не должны смещаться в сторону какого-либо измерения. Динамическое управление разреженными матрицами (Dynamic Sparse Matrix Handling)Физическая схема OLAP-инструмента должна полностью адаптироваться к специфической аналитической модели для оптимального управления разреженными матрицами. Для любой взятой разреженной матрицы существует одна и только одна оптимальная физическая схема. Эта схема предоставляет максимальную эффективность по памяти и операбельность матрицы, если, конечно, весь набор данных помещается в памяти. Многопользовательская поддержка (Multi-User Support)OLAP-инструмент должен предоставлять возможности совместного доступа (запроса и дополнения), целостности и безопасности. Неограниченные перекрестные операции (Unrestricted Cross-dimensional Operations) Вычисления и манипуляция данными по любому числу измерений не должны запрещать или ограничивать любые отношения между ячейками данных. Интуитивная манипуляция данными (Intuitive Data Manipulation)Переориентация путей консолидации, детализация данных в колонках и строках, укрупнение и другие манипуляции, регламентируемые путями консолидации, должны применяться через отдельное воздействие на ячейки аналитической модели, и не должны требовать использования системы меню или иных действий с интерфейсом. Гибкие возможности генерации отчето в (Flexible Reporting)Должны поддерживаться различные способы визуализации данных. Средства формирования отчетов должны представлять собой синтезируемые данные или информацию, следующую из модели данных в ее любой возможной ориентации. Это означает, что строки, столбцы или страницы должны показывать одновременно от 0 до N измерений, где N - число измерений всей аналитической модели. В дополнение к этому, каждое измерение содержимого, показанное в одной записи, колонке или странице, должно также быть способно показать любое подмножество элементов (значений), содержащихся в измерении, причем в любом порядке. Неограниченная размерность и число уровней агрегации (Unlimited Dimensions and Aggregation Levels)Исследование о возможном числе необходимых измерений, требующихся в аналитической модели, показало, что одновременно может использоваться до 19 измерений. Отсюда вытекает настоятельная рекомендация, чтобы аналитический инструмент был способен одновременно предоставить как минимум 15 измерений, а предпочтительнее 20. Более того, каждое из общих измерений не должно быть ограничено по числу определяемых пользователем-аналитиком уровней агрегации и путей консолидации.

42)Пример организации страниц данных в оперативной памяти. Пример работы с базой данных,располагающейся в оперативной па­мяти Лю­бая система системы управления базой данных (СУБД), ориентированная на диалог с пользователем должна содержать как минимум такие возможности, как занесение в базу новых данных; удаление данных из базы; выборка и вывод содержащихся в базе данных.

Хотелось бы реа­лизовать достаточно логичным удобным для пользователя способом. Такие требования предполагают наличие в системе меню. Модельная (упрощенная) схема организации функционирования страничной памяти ЭВМ следующая. Пусть одна система команд ЭВМ позволяет адресовать и использовать m страниц размером 2k каждая. То есть виртуальное адресное пространство программы/процесса может использовать для адресации команд и данных до m страниц. Физическое адресное пространство, в общем случае, может иметь произвольное число физических страниц (их может быть больше m, а может быть и меньше). Соответственно, структура исполнительного физического адреса будет отличаться от структуры исполнительного виртуального адреса размером поля ”номер страницы”. В виртуальном адресе размер поля определяется максимальным числом виртуальных страниц – m. В физическом адресе – максимально возможным количеством физических страниц, которые могут быть подключены к данной ЭВМ (это также фиксированная аппаратная характеристика ЭВМ). В ЦП ЭВМ имеется аппаратная таблица страниц (иногда таблица приписки) следующей структуры: Таблица содержит m строк. Содержимое таблицы определяет соответствие виртуальной памяти физической для выполняющейся в данный момент программы/процесса. Соответствие определяется следующим образом: i-я строка таблицы соответствует i-й виртуальной странице. Содержимое строки αi определяет, чему соответствует i-я виртуальная страница программы/процесса. Если αi ≥ 0, то это означает, что αi есть номер физической страницы, которая соответствует виртуальной странице программы/процесса. Если αi= -1, то это означает, что для i-й виртуальной страницы нет соответствия физической странице ОЗУ (обработка этой ситуации ниже). Итак, рассмотрим последовательность действий при использовании аппарата виртуальной страничной памяти. 1.При выполнении очередной команды схемы управления ЦП вычисляет некоторый адрес операнда (операндов) Aисп. Это виртуальный исполнительный адрес. 2.Из Aисп выделяются значимые поля номер страницы (номер виртуальной страницы). По этому значению происходит индексация и доступ к соответствующей строке таблицы страниц. 3.Если значение строки ≥ 0, то происходит замена содержимого поля номер страницы на соответствующее значение строки таблицы, таким образом, получается физический адрес. И далее ЦП осуществляет работу с физическим адресом.4.Если значение строки таблицы равно –1, то это означает, что полученный виртуальный адрес не размещен в ОЗУ. Причин такой ситуации может быть две. Первая – данная виртуальная страница отсутствует в перечне станиц, доступных для программы/процесса, то есть имеет место попытка обращения в “чужую” память. Вторая ситуация – когда операционная система в целях оптимизации использования ОЗУ откачала некоторые страницы программы/процесса в ВЗУ (свопинг). Что происходит в системе, если значение строки таблицы страниц –1, и мы обратились к этой строке? Происходит прерывание “защита памяти”, управление передается операционной системе (по стандартной схеме обработки прерывания и далее происходит программная обработка ситуации (обращаем внимание, что все, что выполнялось до сих пор – пункт 1, 2, 3 и 4 – это действия аппаратуры, без какого-либо участия программного обеспечения)). ОС по содержимому внутренних данных определяет конечную причину данного прерывания: или это действительно защита памяти, или мы пытались обратиться к странице ОЗУ, которая временно размещена во внешней памяти. Таким образом, предложенная модель организации виртуальной памяти позволяет решить проблему фрагментации ОЗУ. На самом деле, некоторая фрагментация остается (если в странице занят хотя бы 1 байт, то занята вся страница), но она является контролируемой и не оказывает значительного влияния на производительность системы. Далее, данная схема позволяет простыми средствами организовать защиту памяти, а также своппирование страниц. Предложенная модель организации виртуальной памяти позволяет иметь отображение виртуального адресного пространства программы/процесса в произвольные физические адреса; она также позволяет выполнять в системе программы/процессы, размещенные в ОЗУ частично (оставшаяся часть может быть размещена во внешней памяти). Недостаток – необходимость наличия в ЦП аппаратной таблицы значительных размеров.

43)Четыре основные задачи, решаемые с помощью пакета программ «Data Mining» Data Mining (рус. добыча данных, интеллектуальный анализ данных, глубинный анализ данных) — собирательное название, используемое для обозначения совокупности методов обнаружения в данных ранее неизвестных, нетривиальных, практически полезных и доступных интерпретации знаний, необходимых для принятия решений в различных сферах человеческой деятельности. Основу методов Data Mining составляют всевозможные методы классификации, моделирования и прогнозирования, основанные на применении деревьев решений,искусственных нейронных сетей, генетических алгоритмов, эволюционного программирования, ассоциативной памяти, нечёткой логики. К методам Data Mining нередко относят статистические методы (дескриптивный анализ, корреляционный и регрессионный анализ, факторный анализ, дисперсионный анализ, компонентный анализ,дискриминантный анализ, анализ временных рядов). Такие методы, однако, предполагают некоторые априорные представления об анализируемых данных, что несколько расходится с целями Data Mining (обнаружение ранее неизвестных нетривиальных и практически полезных знаний). Одно из важнейших назначений методов Data Mining состоит в наглядном представлении результатов вычислений, что позволяет использовать инструментарий Data Mining людьми, не имеющих специальной математической подготовки. В то же время, применение статистических методов анализа данных требует хорошего владениятеорией вероятностей и математической статистикой. Задачи, решаемые методами Data Mining, принято разделять на описательные (англ. descriptive) и предсказательные (англ. predictive).

В описательных задачах самое главное — это дать наглядное описание имеющихся скрытых закономерностей, в то время как в предсказательных задачах на первом плане стоит вопрос о предсказании для тех случаев, для которых данных ещё нет. К описательным задачам относятся: 1.поиск ассоциативных правил или паттернов (образцов); 2.группировка объектов, кластерный анализ; 3построение регрессионной модели. К предсказательным задачам относятся: 1.классификация объектов (для заранее заданных классов); 2.регрессионный анализ, анализ временны́х рядов.

44)Проблема незафиксированной зависимости (использование «грязных» данных) Транзакция B изменяет данные в строке. После этого транзакция A читает измененные данные и работает с ними. Транзакция B откатывается и восстанавливает старые данные. Результат. Транзакция A в своей работе использовала данные, которых нет в базе данных. Более того, транзакция A использовала данные, которых нет, и не было в базе данных! Действительно, после отката транзакции B, должна восстановиться ситуация, как если бы транзакция B вообще никогда не выполнялась. Таким образом, результаты работы транзакции A некорректны, т.к. она работала с данными, отсутствовавшими в базе данных.



Поделиться:


Последнее изменение этой страницы: 2017-02-17; просмотров: 164; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.17.154.171 (0.013 с.)