Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные характеристики нечетких множеств
Лекция №8. Нечеткая логика Наверное, самым впечатляющим у человеческого интеллекта является способность принимать правильные решения в условиях неполной и нечеткой информации. Построение моделей приближенных размышлений человека и использование их в компьютерных системах представляет сегодня одну из важнейших проблем науки. Основы нечеткой логики были заложены в конце 60-х лет в работах известного американского математика Латфи Заде. Исследования такого рода было вызвано возрастающим неудовольствием экспертными системами. Хваленый "искусственный интеллект", который легко справлялся с задачами управления сложными техническими комплексами, был беспомощным при простейших высказываниях повседневной жизни, типа "Если в машине перед тобой силит неопытный водитель - держись от нее подальше". Для создания действительно интеллектуальных систем, способных адекватно взаимодействовать с человеком, был необходим новый математический аппарат, который переводит неоднозначные жизненные утверждения в язык четких и формальных математических формул. Первым серьезным шагом в этом направлении стала теория нечетких множеств, разработанная Заде. Его работа "Fuzzy Sets", опубликованная в 1965 году в журнале "Information and Control", заложила основы моделирования интеллектуальной деятельности человека и стала начальным толчком к развитию новой математической теории. Он же дал и название для новой области науки - "fuzzy logic" (fuzzy - нечеткий, размытый, мягкий). Чтобы стать классиком, надо немного опередить свое время. Существует легенда о том, каким образом была создана теория "нечетких множеств". Один раз Заде имел длинную дискуссию со своим другом относительно того, чья из жен более привлекательна. Термин "привлекательная" является неопределенным и в результате дискуссии они не смогли прийти к удовлетворительному итогу. Это заставило Загде сформулировать концепцию, которая выражает нечеткие понятия типа "привлекательная" в числовой форме. Дальнейшие работы профессора Латфи Заде и его последователей заложили фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику. Аппарат теории нечетких множеств, продемонстрировав ряд многообещающих возможностей применения - от систем управления летательными аппаратами до прогнозирования итогов выборов, оказался вместе с тем сложным для воплощения. Учитывая имеющийся уровень технологии, нечеткая логика заняла свое место среди других специальных научных дисциплин - где-то посредине между экспертными системами и нейронными сетями. Свое второе рождение теория нечеткой логики пережила в начале восьмидесятых годов, когда несколько групп исследователей (в-основном в США и Япони) всерьез занялись созданием электронных систем различного применения, использующих нечеткие управляющие алгоритмы. Теоретические основы для этого были заложены в ранних работах Коско и других ученых. Третий период начался с конца 80-х годов и до сих пор. Этот период характеризуется бумом практического применения теории нечеткой логики в разных сферах науки и техники. До 90-ого года появилось около 40 патентов, относящихся к нечеткой логике (30 - японских). Сорок восемь японских компаний создают лабораторию LIFE (Laboratory for International Fuzzy Engineering), японское правительство финансирует 5-летнюю программу по нечеткой логике, которая включает 19 разных проектов - от систем оценки глобального загрязнения атмосферы и предвидения землетрясений до АСУ заводских цехов. Результатом выполнения этой программы было появление целого ряда новых массовых микрочипов, базирующихся на нечеткой логике. Сегодня их можно найти в стиральных машинах и видеокамерах, цехах заводов и моторных отсеках автомобилей, в системах управления складскими роботами и боевыми вертолетами. Смещение центра исследований нечетких систем в сторону практических применений привело к постановке целого ряда проблем, в частности:
Нечеткие множества Пусть E - универсальное множество, x - элемент E, а R - определенное свойство. Обычное (четкое) подмножество A универсального множества E, элементы которого удовлетворяют свойство R, определяется как множество упорядоченной пары A = {mA (х)/х}, где mA(х) - характеристическая функция, принимающая значение 1, когда x удовлетворяет свойство R, и 0 - в другом случае. Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "нет" относительно свойства R. В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченной пари A = {mA(х)/х}, где mA(х) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значение в некотором упорядоченном множестве M (например, M = [0,1]). Функция принадлежности указывает степень (или уровень) принадлежности элемента x к подмножеству A. Множество M называют множеством принадлежностей. Если M = {0,1}, тогда нечеткое подмножество A может рассматриваться как обычное или четкое множество. Рассмотрим множество X всех чисел от 0 до 10. Определим подмножество A множества X всех действительных чисел от 5 до 8. A = [5,8] Покажем функцию принадлежности множества A, эта функция ставит в соответствие число 1 или 0 каждому элементу в X, в зависимости от того, принадлежит данный элемент подмножеству A или нет. Результат представлен на следующем рисунке: Можно интерпретировать элементы, соответствующие 1, как элементы, находящиеся в множестве A, а элементы, соответствующие 0, как элементы, не находящиеся в множестве A. Эта концепция используется в многих областях. Но существуют ситуации, в которых данной концепции будет не хватать гибкости. В данном примере опишем множество молодых людей. Формально можно записать так B = {множество молодых людей} Поскольку, вообще, возраст начинается с 0, то нижняя граница этого множества должна быть нулем. Верхнюю границу определить сложнее. Сначала установим верхнюю границу, скажем, равную 20 годам. Таким образом, имеем B как четко ограниченный интервал, буквально: B = [0,20]. Возникает вопрос: почему кто-то в свой двадцатилетний юбилей - молодой, а сразу на следующий день уже не молодой? Очевидно, это структурная проблема, и если передвинуть верхнюю границу в другую точку, то можно задать такой же вопрос. Более естественный путь создания множества B состоит в ослаблении строгого деления на молодых и не молодых. Сделаем это, вынося не только четкие суждения "Да, он принадлежит множеству молодых людей" или "Нет, она не принадлежит множеству молодых людей", но и гибкие формулировки "Да, он принадлежит к довольно молодым людям" или "Нет, он не очень молодой". Рассмотрим как с помощью нечеткого множества определить выражение "он еще молодой". В первом примере мы кодировали все элементы множества с помощью 0 ли 1. Простым способом обобщить данную концепцию является введение значений между 0 и 1. Реально можно даже допустить бесконечное число значений между 0 и 1, в единичном интервале I = [0, 1]. Интерпретация чисел при соотношении всех элементов множества становится теперь сложнее. Конечно, число 1 соответствует элементу, принадлежащему множеству B, а 0 означает, что элемент точно не принадлежит множеству B. Все другие значения определяют степень принадлежности к множеству B. Для наглядности приведем характеристическую функцию множества молодых людей, как и в первом примере. Пусть E = {x1, x2, x3, x4, x5 }, M = [0,1]; A - нечеткое множество, для которого mA(x1)=0,3; mA(x2)=0; mA(x3)=1; mA(x4)=0,5; mA(x5)=0,9 Тогда A можно представить в виде: A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5, (знак "+" является операцией не сложения, а объединения) или
Примеры нечетких множеств 4. Пусть E = {Запорожец, Жигули, Мерседес,....} - множество марок автомобилей, а E' = [0,µ] - универсальное множество "стоимость", тогда на E' мы можем определить нечеткие множества типа: "для небогатых ", "для среднего класса", "престижные", с функциями принадлежности типа: Имея эти функции и зная цены автомобилей из E в данный момент времени, определим на E' нечеткие множества с этими же названиями. Так, например, нечеткое множество "для небогатых", заданное на универсальном множестве E = {Запорожец, Жигули, Мерседес,....} выглядит таким образом: Аналогично можно определить нечеткое множество "скоростные", "средние", "тихоходные" и т.д. Свойства операций И і З Пусть А, В, С - нечеткие множества, тогда выполняются следующие свойства:
Пример Пусть эксперт определяет толщину изделия, с помощью понятия "маленькая толщина", "средняя толщина" и "большая толщина", при этом минимальная толщина равняется 10 мм, а максимальная - 80 мм. Формализация этого описания может быть проведена с помощью лингвистической переменной <b, T, X, G, M>, где
Вместе с рассмотренными выше базовыми значениями лингвистической переменной "толщина" (Т={"маленькая толщина", "средняя толщина", "большая толщина"}) существуют значения, зависящие от области определения Х. В данном случае значения лингвистической переменной "толщина изделия" могут быть определены как "около 20 мм", "около 50 мм", "около 70 мм", то есть в виде нечетких чисел. Функции принадлежности нечетких множеств: "маленькая толщина" = А1, "средняя толщина"= А2, " большая толщина"= А3. Функция принадлежности: нечеткое множество "маленькая или средняя толщина" = А1ИА1. Применение нечетких систем Что касается отечественного рынка коммерческих систем на основе нечеткой логики, то его формирование началось в середине 1995 года. Популярными являются следующие пакеты:
Основными потребителями нечеткой логики на рынке СНГ являются банкиры и финансисты, а также специалисты в области политического и экономического анализа. Они используют CubiCalc для создания моделей разных экономических, политических, биржевых ситуаций. Что же касается пакета FuziCalc, то он занял свое место на компьютерах больших банкиров и специалистов по чрезвычайным ситуациям - то есть тех, для кого важна скорость проведения расчетов в условиях неполноты и неточности входной информации. Однако можно с уверенностью сказать, что эпоха расцвета прикладного использования нечеткой логики на отечественном рынке еще впереди. Сегодня элементы нечеткой логики можно найти в десятках промышленных изделий - от систем управления электропоездами и боевыми вертолетами до пылесосов и стиральных машин. Без применения нечеткой логики немыслимы современные ситуационные центры руководителей западных стран, где принимаются ключевые политические решения и моделируются разные кризисные ситуации. Одним из впечатляющих примеров масштабного применения нечеткой логики стало комплексное моделирование систем Лекция №8. Нечеткая логика Наверное, самым впечатляющим у человеческого интеллекта является способность принимать правильные решения в условиях неполной и нечеткой информации. Построение моделей приближенных размышлений человека и использование их в компьютерных системах представляет сегодня одну из важнейших проблем науки. Основы нечеткой логики были заложены в конце 60-х лет в работах известного американского математика Латфи Заде. Исследования такого рода было вызвано возрастающим неудовольствием экспертными системами. Хваленый "искусственный интеллект", который легко справлялся с задачами управления сложными техническими комплексами, был беспомощным при простейших высказываниях повседневной жизни, типа "Если в машине перед тобой силит неопытный водитель - держись от нее подальше". Для создания действительно интеллектуальных систем, способных адекватно взаимодействовать с человеком, был необходим новый математический аппарат, который переводит неоднозначные жизненные утверждения в язык четких и формальных математических формул. Первым серьезным шагом в этом направлении стала теория нечетких множеств, разработанная Заде. Его работа "Fuzzy Sets", опубликованная в 1965 году в журнале "Information and Control", заложила основы моделирования интеллектуальной деятельности человека и стала начальным толчком к развитию новой математической теории. Он же дал и название для новой области науки - "fuzzy logic" (fuzzy - нечеткий, размытый, мягкий). Чтобы стать классиком, надо немного опередить свое время. Существует легенда о том, каким образом была создана теория "нечетких множеств". Один раз Заде имел длинную дискуссию со своим другом относительно того, чья из жен более привлекательна. Термин "привлекательная" является неопределенным и в результате дискуссии они не смогли прийти к удовлетворительному итогу. Это заставило Загде сформулировать концепцию, которая выражает нечеткие понятия типа "привлекательная" в числовой форме. Дальнейшие работы профессора Латфи Заде и его последователей заложили фундамент новой теории и создали предпосылки для внедрения методов нечеткого управления в инженерную практику. Аппарат теории нечетких множеств, продемонстрировав ряд многообещающих возможностей применения - от систем управления летательными аппаратами до прогнозирования итогов выборов, оказался вместе с тем сложным для воплощения. Учитывая имеющийся уровень технологии, нечеткая логика заняла свое место среди других специальных научных дисциплин - где-то посредине между экспертными системами и нейронными сетями. Свое второе рождение теория нечеткой логики пережила в начале восьмидесятых годов, когда несколько групп исследователей (в-основном в США и Япони) всерьез занялись созданием электронных систем различного применения, использующих нечеткие управляющие алгоритмы. Теоретические основы для этого были заложены в ранних работах Коско и других ученых. Третий период начался с конца 80-х годов и до сих пор. Этот период характеризуется бумом практического применения теории нечеткой логики в разных сферах науки и техники. До 90-ого года появилось около 40 патентов, относящихся к нечеткой логике (30 - японских). Сорок восемь японских компаний создают лабораторию LIFE (Laboratory for International Fuzzy Engineering), японское правительство финансирует 5-летнюю программу по нечеткой логике, которая включает 19 разных проектов - от систем оценки глобального загрязнения атмосферы и предвидения землетрясений до АСУ заводских цехов. Результатом выполнения этой программы было появление целого ряда новых массовых микрочипов, базирующихся на нечеткой логике. Сегодня их можно найти в стиральных машинах и видеокамерах, цехах заводов и моторных отсеках автомобилей, в системах управления складскими роботами и боевыми вертолетами. Смещение центра исследований нечетких систем в сторону практических применений привело к постановке целого ряда проблем, в частности:
Нечеткие множества Пусть E - универсальное множество, x - элемент E, а R - определенное свойство. Обычное (четкое) подмножество A универсального множества E, элементы которого удовлетворяют свойство R, определяется как множество упорядоченной пары A = {mA (х)/х}, где mA(х) - характеристическая функция, принимающая значение 1, когда x удовлетворяет свойство R, и 0 - в другом случае. Нечеткое подмножество отличается от обычного тем, что для элементов x из E нет однозначного ответа "нет" относительно свойства R. В связи с этим, нечеткое подмножество A универсального множества E определяется как множество упорядоченной пари A = {mA(х)/х}, где mA(х) - характеристическая функция принадлежности (или просто функция принадлежности), принимающая значение в некотором упорядоченном множестве M (например, M = [0,1]). Функция принадлежности указывает степень (или уровень) принадлежности элемента x к подмножеству A. Множество M называют множеством принадлежностей. Если M = {0,1}, тогда нечеткое подмножество A может рассматриваться как обычное или четкое множество. Рассмотрим множество X всех чисел от 0 до 10. Определим подмножество A множества X всех действительных чисел от 5 до 8. A = [5,8] Покажем функцию принадлежности множества A, эта функция ставит в соответствие число 1 или 0 каждому элементу в X, в зависимости от того, принадлежит данный элемент подмножеству A или нет. Результат представлен на следующем рисунке: Можно интерпретировать элементы, соответствующие 1, как элементы, находящиеся в множестве A, а элементы, соответствующие 0, как элементы, не находящиеся в множестве A. Эта концепция используется в многих областях. Но существуют ситуации, в которых данной концепции будет не хватать гибкости. В данном примере опишем множество молодых людей. Формально можно записать так B = {множество молодых людей} Поскольку, вообще, возраст начинается с 0, то нижняя граница этого множества должна быть нулем. Верхнюю границу определить сложнее. Сначала установим верхнюю границу, скажем, равную 20 годам. Таким образом, имеем B как четко ограниченный интервал, буквально: B = [0,20]. Возникает вопрос: почему кто-то в свой двадцатилетний юбилей - молодой, а сразу на следующий день уже не молодой? Очевидно, это структурная проблема, и если передвинуть верхнюю границу в другую точку, то можно задать такой же вопрос. Более естественный путь создания множества B состоит в ослаблении строгого деления на молодых и не молодых. Сделаем это, вынося не только четкие суждения "Да, он принадлежит множеству молодых людей" или "Нет, она не принадлежит множеству молодых людей", но и гибкие формулировки "Да, он принадлежит к довольно молодым людям" или "Нет, он не очень молодой". Рассмотрим как с помощью нечеткого множества определить выражение "он еще молодой". В первом примере мы кодировали все элементы множества с помощью 0 ли 1. Простым способом обобщить данную концепцию является введение значений между 0 и 1. Реально можно даже допустить бесконечное число значений между 0 и 1, в единичном интервале I = [0, 1]. Интерпретация чисел при соотношении всех элементов множества становится теперь сложнее. Конечно, число 1 соответствует элементу, принадлежащему множеству B, а 0 означает, что элемент точно не принадлежит множеству B. Все другие значения определяют степень принадлежности к множеству B. Для наглядности приведем характеристическую функцию множества молодых людей, как и в первом примере. Пусть E = {x1, x2, x3, x4, x5 }, M = [0,1]; A - нечеткое множество, для которого mA(x1)=0,3; mA(x2)=0; mA(x3)=1; mA(x4)=0,5; mA(x5)=0,9 Тогда A можно представить в виде: A = {0,3/x1; 0/x2; 1/x3; 0,5/x4; 0,9/x5 } или A = 0,3/x1 + 0/x2 + 1/x3 + 0,5/x4 + 0,9/x5, (знак "+" является операцией не сложения, а объединения) или
Основные характеристики нечетких множеств Пусть M = [0,1] и A - нечеткое множество с элементами из универсального множества E и множеством принадлежностей M
Примеры нечетких множеств 4. Пусть E = {Запорожец, Жигули, Мерседес,....} - множество марок автомобилей, а E' = [0,µ] - универсальное множество "стоимость", тогда на E' мы можем определить нечеткие множества типа: "для небогатых ", "для среднего класса", "престижные", с функциями принадлежности типа: Имея эти функции и зная цены автомобилей из E в данный момент времени, определим на E' нечеткие множества с этими же названиями. Так, например, нечеткое множество "для небогатых", заданное на универсальном множестве E = {Запорожец, Жигули, Мерседес,....} выглядит таким образом: Аналогично можно определить нечеткое множество "скоростные", "средние", "тихоходные" и т.д.
|
||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 115; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.122.95 (0.013 с.) |