Тема 3. 2 сети Token Ring и FDDI 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 3. 2 сети Token Ring и FDDI



Сети Token Ring характеризует разделяемая среда передачи данных, которая состоит из отрезков кабеля, соединяющих все станции сети в кольцо. Кольцо рассматривается как общий разделяемый ресурс, и для доступа к нему требуется не случайный алгоритм, как в сетях Ethernet, а детерминированный, основанный на передаче станциям права на использование кольца в определенном порядке. Это право передается с помощью кадра специального формата, называемого маркером или токеном (token).

Сети Token Ring работают с двумя битовыми скоростями - 4 и 16 Мбит/с. Смешение станций, работающих на различных скоростях, в одном кольце не допускается. Сети Token Ring, работающие со скоростью 16 Мбит/с, имеют некоторые усовершенствования в алгоритме доступа по сравнению со стандартом 4 Мбит/с.

Технология Token Ring является более сложной технологией, чем Ethernet. Она обладает свойствами отказоустойчивости. В сети Token Ring определены процедуры контроля работы сети, которые используют обратную связь кольцеобразной структуры - посланный кадр всегда возвращается в станцию - отправитель. В некоторых случаях обнаруженные ошибки в работе сети устраняются автоматически, например может быть восстановлен потерянный маркер. В других случаях ошибки только фиксируются, а их устранение выполняется вручную обслуживающим персоналом.

Для контроля сети одна из станций выполняет роль так называемого активного монитора. Активный монитор выбирается во время инициализации кольца как станция с максимальным значением МАС-адреса, Если активный монитор выходит из строя, процедура инициализации кольца повторяется и выбирается новый активный монитор. Чтобы сеть могла обнаружить отказ активного монитора, последний в работоспособном состоянии каждые 3 секунды генерирует специальный кадр своего присутствия. Если этот кадр не появляется в сети более 7 секунд, то остальные станции сети начинают процедуру выборов нового активного монитора.

В сетях с маркерным методом доступа (а к ним, кроме сетей Token Ring, относятся сети FDDI, а также сети, близкие к стандарту 802.4, - ArcNet, сети производственного назначения MAP) право на доступ к среде передается циклически от станции к станции по логическому кольцу.

В сети Token Ring кольцо образуется отрезками кабеля, соединяющими соседние станции. Таким образом, каждая станция связана со своей предшествующей и последующей станцией и может непосредственно обмениваться данными только с ними. Для обеспечения доступа станций к физической среде по кольцу циркулирует кадр специального формата и назначения - маркер. В сети Token Ring любая станция всегда непосредственно получает данные только от одной станции - той, которая является предыдущей в кольце. Такая станция называется ближайшим активным соседом, расположенным выше по потоку (данных) - Nearest Active Upstream Neighbor, NAUN. Передачу же данных станция всегда осуществляет своему ближайшему соседу вниз по потоку данных.

Получив маркер, станция анализирует его и при отсутствии у нее данных для передачи обеспечивает его продвижение к следующей станции. Станция, которая имеет данные для передачи, при получении маркера изымает его из кольца, что дает ей право доступа к физической среде и передачи своих данных. Затем эта станция выдает в кольцо кадр данных установленного формата последовательно по битам. Переданные данные проходят по кольцу всегда в одном направлении от одной станции к другой. Кадр снабжен адресом назначения и адресом источника.

Все станции кольца ретранслируют кадр побитно, как повторители. Если кадр проходит через станцию назначения, то, распознав свой адрес, эта станция копирует кадр в свой внутренний буфер и вставляет в кадр признак подтверждения приема. Станция, выдавшая кадр данных в кольцо, при обратном его получении с подтверждением приема изымает этот кадр из кольца и передает в сеть новый маркер для обеспечения возможности другим станциям сети передавать данные. Такой алгоритм доступа применяется в сетях Token Ring со скоростью работы 4 Мбит/с, описанных в стандарте 802.5.

На рис. 1 описанный алгоритм доступа к среде иллюстрируется временной диаграммой. Здесь показана передача пакета А в кольце, состоящем из 6 станций, от станции 1 к станции 3. После прохождения станции назначения 3 в пакете А устанавливаются два признака - признак распознавания адреса и признак копирования пакета в буфер (что на рисунке отмечено звездочкой внутри пакета). После возвращения пакета в станцию 1 отправитель распознает свой пакет по адресу источника и удаляет пакет из кольца. Установленные станцией 3 признаки говорят станции-отправителю о том, что пакет дошел до адресата и был успешно скопирован им в свой буфер.

Рис. 1. Принцип маркерного доступа

Время владения разделяемой средой в сети Token Ring ограничивается временем удержания маркера (token holding time), после истечения которого станция обязана прекратить передачу собственных данных (текущий кадр разрешается завершить) и передать маркер далее по кольцу. Станция может успеть передать за время удержания маркера один или несколько кадров в зависимости от размера кадров и величины времени удержания маркера. Обычно время удержания маркера по умолчанию равно 10 мс, а максимальный размер кадра в стандарте 802.5 не определен. Для сетей 4 Мбит/с он обычно равен 4 Кбайт, а для сетей 16 Мбит/с - 16 Кбайт. Это связано с тем, что за время удержания маркера станция должна успеть передать хотя бы один кадр. При скорости 4 Мбит/с за время 10 мс можно передать 5000 байт, а при скорости 16 Мбит/с - соответственно 20 000 байт. Максимальные размеры кадра выбраны с некоторым запасом.

В сетях Token Ring 16 Мбит/с используется также несколько другой алгоритм доступа к кольцу, называемый алгоритмом раннего освобождения маркера (Early Token Release). В соответствии с ним станция передает маркер доступа следующей станции сразу же после окончания передачи последнего бита кадра, не дожидаясь возвращения по кольцу этого кадра с битом подтверждения приема. В этом случае пропускная способность кольца используется более эффективно, так как по кольцу одновременно продвигаются кадры нескольких станций. Тем не менее свои кадры в каждый момент времени может генерировать только одна станция - та, которая в данный момент владеет маркером доступа. Остальные станции в это время только повторяют чужие кадры, так что принцип разделения кольца во времени сохраняется, ускоряется только процедура передачи владения кольцом.

Для различных видов сообщений, передаваемым кадрам, могут назначаться различные приоритеты: от 0 (низший) до 7 (высший). Решение о приоритете конкретного кадра принимает передающая станция (протокол Token Ring получает этот параметр через межуровневые интерфейсы от протоколов верхнего уровня, например прикладного). Маркер также всегда имеет некоторый уровень текущего приоритета. Станция имеет право захватить переданный ей маркер только в том случае, если приоритет кадра, который она хочет передать, выше (или равен) приоритета маркера. В противном случае станция обязана передать маркер следующей по кольцу станции.

За наличие в сети маркера, причем единственной его копии, отвечает активный монитор. Если активный монитор не получает маркер в течение длительного времени (например, 2,6 с), то он порождает новый маркер.

Технология FDDI

Технология FDDI (Fiber Distributed Data Interface) - оптоволоконный интерфейс распределенных данных - это первая технология локальных сетей, в которой средой передачи данных является волоконно-оптический кабель.

Технология FDDI во многом основывается на технологии Token Ring, развивая и совершенствуя ее основные идеи. Разработчики технологии FDDI ставили перед собой в качестве наиболее приоритетных следующие цели:

· повысить битовую скорость передачи данных до 100 Мбит/с;

· повысить отказоустойчивость сети за счет стандартных процедур восстановления ее после отказов различного рода - повреждения кабеля, некорректной работы узла, концентратора, возникновения высокого уровня помех на линии и т. п.;

· максимально эффективно использовать потенциальную пропускную способность сети как для асинхронного, так и для синхронного (чувствительного к задержкам) трафиков.

Сеть FDDI строится на основе двух оптоволоконных колец, которые образуют основной и резервный пути передачи данных между узлами сети. Наличие двух колец - это основной способ повышения отказоустойчивости в сети FDDI, и узлы, которые хотят воспользоваться этим повышенным потенциалом надежности, должны быть подключены к обоим кольцам.

В нормальном режиме работы сети данные проходят через все узлы и все участки кабеля только первичного (Primary) кольца, этот режим назван режимом Thru - «сквозным» или «транзитным». Вторичное кольцо (Secondary) в этом режиме не используется.

В случае какого-либо вида отказа, когда часть первичного кольца не может передавать данные (например, обрыв кабеля или отказ узла), первичное кольцо объединяется со вторичным (рис. 2), вновь образуя единое кольцо. Этот режим работы сети называется Wrap, то есть «свертывание» или «сворачивание» колец. Операция свертывания производится средствами концентраторов и/или сетевых адаптеров FDDI. Для упрощения этой процедуры данные по первичному кольцу всегда передаются в одном направлении (на диаграммах это направление изображается против часовой стрелки), а по вторичному - в обратном (изображается по часовой стрелке). Поэтому при образовании общего кольца из двух колец передатчики станций по-прежнему остаются подключенными к приемникам соседних станций, что позволяет правильно передавать и принимать информацию соседними станциями.

Рис. 2. Реконфигурация колец FDDI при отказе

 

 

Характеристики технологий FDDI, Ethernet, Token Ring

 

Тема 3.3 Беспроводные сети

История беспроводных технологий передачи информации началась в конце XIX века с передачей первого радиосигнала и появлением в 20-х годах ХХ века первых радиоприемников с амплитудной модуляцией. В 1930-е годы появилось радио с частотной модуляцией и телевидение. В 1970-е годы были созданы первые беспроводные телефонные системы. Сначала это были аналоговые сети, в начале 1980-х появился стандарт GSM, ознаменовавший начало перехода на цифровые стандарты как обеспечивающие лучшее распределение спектра, лучшее качество сигнала и большую безопасность. С 90-x годов ХХ века происходит укрепление позиций беспроводных сетей. Беспроводные технологии прочно входят в нашу жизнь. Развиваясь с огромной скоростью, они стимулируют создание новых устройств и услуг.

Существенной для развития беспроводных технологий является и возможность их применения домашними пользователями. Чем больше устройств в домашней сети, тем сильнее загромождают дом соединяющие их провода. А это уже повод для перехода на беспроводные технологии. Повышение степени комфортности современного дома, объединение в одно целое всех его структур и объектов (компьютера, телевизора, цифровой фотокамеры, домашнего развлекательного центра, системы охраны, климатической системы, бытовой техники и т. д.) - основа идеи создания интеллектуального цифрового дома, которая также реализуется с помощью беспроводных устройств.

WI-FI - это современная беспроводная технология соединения компьютеров в локальную сеть и подключения их к Internet. Именно благодаря этой технологии Internet становится мобильным и дает пользователю свободу перемещения не то что в пределах комнаты, но и по всему миру.

Под аббревиатурой "Wi-Fi" (от английского словосочетания "Wireless Fidelity ", которое можно дословно перевести как "высокая точность беспроводной передачи данных") в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

С увеличением числа мобильных пользователей возникает острая необходимость в оперативном создании коммуникаций между ними, в обмене данными, в быстром получении информации. Поэтому естественным образом происходит интенсивное развитие технологий беспроводных коммуникаций. Особенно это актуально в отношении беспроводных сетей, или так называемых WLAN -сетей (Wireless Local Area Network). Сети Wireless LAN - это беспроводные сети (вместо обычных проводов в них используются радиоволны). Установка таких сетей рекомендуется там, где развертывание кабельной системы невозможно или экономически нецелесообразно.

Беспроводные сети особенно эффективны на предприятиях, где сотрудники активно перемещаются по территории во время рабочего дня с целью обслуживания клиентов или сбора информации (крупные склады, агентства, офисы продаж, учреждения здравоохранения и др.).

Благодаря функции роуминга между точками доступа пользователи могут перемещаться по территории покрытия сети Wi-Fi без разрыва соединения.

WLAN -сети имеют ряд преимуществ перед обычными кабельными сетями:

· WLAN -сеть можно очень быстро развернуть, что очень удобно при проведении презентаций или в условиях работы вне офиса;

· пользователи мобильных устройств при подключении к локальным беспроводным сетям могут легко перемещаться в рамках действующих зон сети;

· скорость современных сетей довольно высока (до 300 Мб/с), что позволяет использовать их для решения очень широкого спектра задач;

· WLAN -сеть может оказаться единственным выходом, если невозможна прокладка кабеля для обычной сети.

Вместе с тем необходимо помнить об ограничениях беспроводных сетей. Это, как правило, все-таки меньшая скорость, подверженность влиянию помех и более сложная схема обеспечения безопасности передаваемой информации.

Сегмент Wi-Fi сети может использоваться как самостоятельная сеть, либо в составе более сложной сети, содержащей как беспроводные, так и обычные проводные сегменты. Wi-Fi сеть может использоваться:

· для беспроводного подключения пользователей к сети;

· для объединения пространственно разнесенных подсетей в одну общую сеть там, где кабельное соединение подсетей невозможно или нежелательно;

· для подключения к сетям провайдера Internet-услуги вместо использования выделенной проводной линии или обычного модемного соединения.

Основные элементы сети

Для построения беспроводной сети используются Wi-Fi адаптеры и точки доступа.

Адаптер (рис.1) представляет собой устройство, которое подключается через слот расширения PCI, PCMCIA, CompactFlash. Существуют также адаптеры с подключением через порт USB 2.0. Wi-Fi адаптер выполняет ту же функцию, что и сетевая карта в проводной сети. Он служит для подключения компьютера пользователя к беспроводной сети. Благодаря платформе Centrino все современные ноутбуки имеют встроенные адаптеры Wi-Fi, совместимые со многими современными стандартами. Wi-Fi адаптерами, как правило, снабжены и КПК (карманные персональные компьютеры), что также позволяет подключать их к беспроводным сетям.

Для доступа к беспроводной сети адаптер может устанавливать связь непосредственно с другими адаптерами. Такая сеть называется беспроводной одноранговой сетью или Ad Hoc ("к случаю"). Адаптер также может устанавливать связь через специальное устройство - точку доступа. Такой режим называется инфраструктурой.

Для выбора способа подключения адаптер должен быть настроен на использование либо Ad Hoc, либо инфраструктурного режима.

Точка доступа (рис.2) представляет собой автономный модуль со встроенным микрокомпьютером и приемно-передающим устройством.


Рис. 1. Адаптеры

Через точку доступа осуществляется взаимодействие и обмен информацией между беспроводными адаптерами, а также связь с проводным сегментом сети. Таким образом, точка доступа играет роль коммутатора.


Рис. 2. Точка доступа

Точка доступа имеет сетевой интерфейс (uplink port), при помощи которого она может быть подключена к обычной проводной сети. Через этот же интерфейс может осуществляться и настройка точки.

Описание беспроводного оборудования можно найти в Приложении А.

Точка доступа может использоваться как для подключения к ней клиентов (базовый режим точки доступа), так и для взаимодействия с другими точками доступа с целью построения распределенной сети (Wireless Distributed System - WDS). Это режимы беспроводного моста "точка-точка" и "точка - много точек", беспроводной клиент и повторитель.

Доступ к сети обеспечивается путем передачи широковещательных сигналов через эфир. Принимающая станция может получать сигналы в диапазоне работы нескольких передающих станций. Станция-приемник использует идентификатор зоны обслуживания (Service Set IDentifier - SSID) для фильтрации получаемых сигналов и выделения того, который ей нужен.

Зоной обслуживания (Service Set - SS) называются логически сгруппированные устройства, обеспечивающие подключение к беспроводной сети.

Базовая зона обслуживания (Basic Service Set - BSS) - это группа станций, которые связываются друг с другом по беспроводной связи. Технология BSS предполагает наличие особой станции, которая называется точкой доступа (access point).

Для более полного понимания работы беспроводных устройств обратимся к следующему разделу.

Существует несколько технологий беспроводных сетей, использующих как радио-, так и инфракрасные волны. Совместимые со стандартом 802.11b беспроводные сети работают на максимальной скорости 11 Мбит/с. Основное преимущество таких сетей – возможность объединения разного оборудования.

Беспроводные сети могут иметь две логические топологии:

· Точка-точка доступа (Infrastructure) - звездообразная - применяется в устройствах стандарта 802.11 b и RadioLAN. Здесь точка доступа (узловой передатчик) играет роль концентратора, поскольку все компьютеры соединяются через нее, а не взаимодействуют друг с другом напрямую. Здесь несколько сетевых адаптеров могут быть объединены одной точкой доступа, либо несколько точек доступа соединены с одной точкой доступа. Этот режим применяется для создания локальной беспроводной сети из нескольких пользователей, для соединения этой сети с проводной сетью (например, для выхода в Интернет), для соединения между собой нескольких проводных сетей.

· Точка-точка (Ad-hoc). Два сетевых адаптера либо две точки доступа соединяются между собой. Метод применяется для непосредственного соединения двух компьютеров либо при организации радио-моста между двумя проводными сетями. Эта топология используется в устройствах HomeRF (Home Radio Freqiuently – домашний радиодиапазон) и применяется в устройствах Bluetooth. Такие устройства напрямую соединяются друг с другом и не требуют никаких узловых передатчиков или других устройств, подобных концентратору, для взаимодействия друг с другом.

Таким образом, оборудование беспроводных сетей включает в себя узловые передатчики, т.н. точки беспроводного доступа (Access Point) и беспроводные адаптеры для каждого абонента. Точки доступа выполняют роль концентраторов, обеспечивающих связь между абонентами и между собой, а также функцию мостов, осуществляющих связь с кабельной локальной сетью и с Интернет. Несколько близкорасположенных точек доступа образуют зону доступа Wi-Fi (Hotspot), в пределах которой все абоненты, снабженные беспроводными адаптерами, получают доступ к сети. Каждая точка доступа может обслуживать несколько абонентов, но чем больше абонентов, тем меньше эффективная скорость передачи для каждого из них. Клиентские системы автоматически переключаются на узловой передатчик с более сильным сигналом или на передатчик с меньшим уровнем ошибок.

Метод доступа к такой сети – множественный доступ с предотвращением коллизий CSMA/CD (Carrier Sense Multiple Access with Collision Detection). Сеть строится по сотовому принципу. В сети предусмотрен механизм роуминга, то есть поддерживается автоматическое подключение к точке доступа и переключение между точками доступа при перемещении абонентов, хотя строгих правил роуминга стандарт не устанавливает.

 



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 472; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.55.14 (0.042 с.)