Вторично-электронного умножителя. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Вторично-электронного умножителя.



Световое изображение преобразуется в электронное на полупрозрачном светочувствительном слое – фотокатода, нанесенном на внутреннюю поверхность планшайбы трубки, за счет того, что падающий световой поток выбивает фотоэлектроны с его поверхности. Причем, число фотоэлектронов зависит от яркости элементов изображения – чем ярче изображение, тем больше фотоэлектронов. Далее это электронное изображение переносится в плоскость диафрагмы с помощью ускоряющего напряжения, приложенного к УСЭ в магнитном поле ФК. В плоскости диафрагмы под действием отклоняющего поля ОК электронное изображение перемещается относительно отверстия диафрагмы по закону развертки. При этом фотоэлектроны с различных участков ФК попадают через отверстие на первый динод ВЭУ в котором мгновенное значение фототока усиливается за счет размножения вторичных электронов. Питание на диноды подается таким образом, что потенциал каждого последующего динода выше предыдущего, таким образом выбитый электрон из 1 динода ускоряется полем 2 динода и выбивает из него уже 2 электрона и так далее.

Коэффициент усиления ВЭУ достигает 100000, что позволяет поучить ток сигнала порядка 100мкА, отрицательной полярности.

Диссекторы имеют линейную световую характеристику при освещенности ФК от десятых долей люкса до нескольких тысяч, обеспечивают хорошее воспроизведение градаций яркости и высокую разрешающую способность. Современные диссекторы обладают высокой механической прочностью, виброустойчивостью и могут работать в большом интервале температур. Кроме того, они после подачи питающих напряжений мгновенно готовы к работе, поэтому они активно используются в различных системах прикладного ТВ, обеспечивающих автоматизацию производственных процессов, слежение за слабосветящимися точечными объектами в телескопах и астронавигации, чтении микрофильмов, а также в телекинопроекционных установках и т.д.

Недостатком диссекторов, а их промышленность выпускает более 15 типов, является их низкая чувствительность в стандарте вещательного ТВ, что, однако, является недостатком всех систем мгновенного действия.

Следует отметить, что наиболее чувствительной передающей трубкой, использующей внешний фотоэффект, является суперортикон (ЛИ201, ЛИ221…) Высокая чувствительность обеспечивается за счет переноса электронного изображения с полупрозрачного фотокатода на 2-х стороннюю накапливающую мишень и ее развертки пучком медленных электронов с последующим усилением изображения внутренним ВЭУ.

Эти трубки имели высокую чувствительность и разрешающую способность, однако, они были очень сложны в производстве и эксплуатации из-за большого числа регулировок. Кроме того, они имели большие габариты и низкий срок службы (200-750 ч), большое время включения (20-30 мин из-за прогрева мишени до температуры 35-600С) и к тому же высокую чувствительность к вибрациям, ударам, изменению температуры.

ПРИНЦИП НАКОПЛЕНИЯ ЗАРЯДА

Как уже говорилось, основным недостатком систем мгновенного действия является их низкая чувствительность, поскольку у них в образовании сигнала участвуют лишь те фотоэлектроны, которые эмитируются с участка фотокатода, соответствующего одному элементу изображения во время коммутации, хотя фотоэмиссия происходит со всей мишени постоянно.

Повысить эффективность работы фотопреобразователей можно за счет использования принципа накопления заряда, заключающегося в том, что световая энергия, облучающая элемент в меж коммутационный период, накапливается на специальном накопительном конденсаторе (рис. 7.3.а).

Рис. 7.3. Принцип накопления световой энергии:

а - эквивалентная схема; б – модуль ТВ системы с накоплением

Емкость Сэ за счет фотоэмиссии накапливает заряд в течении кадра, а поскольку увеличение светового потока сопровождается увеличением фототока, то элементы имеющие разную освещенность получат различные заряды. Сигнал с элементарного конденсатора Сэ получается в результате его быстрого разряда коммутирующим лучом развертки за время на нагрузочный резистор Rн, причем, в идеале принцип накопления увеличивает напряжение сигнала в N раз, равное количеству элементов разложения, поскольку:

 

Qзар = iф Tк ; iраз = Qзар/tэ = iфTк /tэ = iф N; uср = Rн iф N,

 

где N-количество элементов разложения. Однако, на практике такой выигрыш получить не удается.

Рассмотренный процесс накопления зарядов реализован в ряде передающих трубок содержащих мозаичную или фотопроводниковую фотомишень, эквивалентная схема которой представлена на рис.6.4б.Она состоит из изолированных ячеек, каждая из которых содержит фотоэлемент и накопительный конденсатор. При проекции оптического изображения в цепях ФЭ возникает ток, пропорциональный освещенности, поэтому конденсаторы заряжаются до различных значений, образуя потенциальный рельеф. Преобразование потенциального рельефа в сигнал изображения происходит путем последовательной коммутации, электронным лучом развертки, накопительных конденсаторов в цепь нагрузки. Токи разряда накопительных конденсаторов, протекая через резистор нагрузки, включенный в цепь сигнальной пластины СП создают на нем сигнал изображения.

 

 

ВИДИКОН

Фоточувствительные поверхности, использующие явление внешнего фотоэффекта, обладают малой чувствительностью. Существенно увеличить чувствительность трубок можно, используя фотомишени, построенные на явлении внутреннего фотоэффекта - фотопроводимости. Кроме того, мишень из фотопроводящих слоев, являясь фоточувствительным элементом, одновременно накапливает световую энергию, что значительно упрощает конструкцию трубки, которые были разработаны в 1950 г.

Конструкция и принцип действия. Видикон отличается простотой конструкции, небольшими размерами и массой и является высоконадежной и дешевой передающей трубкой.

Конструкция видикона представлена на рис.7.4, где:

СП – сигнальная пластина(фотомишень);

ВС – выравнивающая сетка;

ФК – фокусирующие катушки;

ОК – отклоняющие катушки;

КК – корректирующие катушки;

А1 – первый анод;

А2 – второй анод

Ф - световой поток;

Uc – напряжение выходного сигнала.

 

Рис.7.4. Устройство видикона

 

Трубки типа видикон содержат 2 основных узла: фотомишень и электронную пушку. Фотомишень состоит из фотослоя и сигнальной пластины, которая представляет собой проводящий слой золота, платины или окиси олова, нанесенную на внутреннюю поверхность планшайбы и имеющую прозрачность более 90% и поверхностное сопротивление 200 Ом * см. На СП нанесен фотослой толщиной 1…3 мкм из соединения сурьмы, мышьяка, серы. Материал, из которого изготовлена мишень и его толщина определяют чувствительность, спектральную характеристику и инерционность видикона. Электронно-оптическая система содержит электронную пушку и мелкоструктурную выравнивающую сетку (ВС) помещенную перед фотомишенью. Пушка состоит из подогреваемого катода, управляющего электрода (УЭ), первого (А1) и второго (А2) анодов. Второй анод создает эквипотенциальную область, в которой происходит фокусировка и отклонение развертывающего луча. Потенциал выравнивающей сетки в 1,5-2 раза превосходит напряжение второго анода, что обеспечивает подход электронов ко всей поверхности фотомишени под прямым углом. Это обеспечивает равномерную фокусировку луча, и одинаковый исходный потенциал на всей поверхности мишени, что является одним из условий получения равномерного сигнала по всему полю изображения. Фокусировка, отклонение и коррекция траектории электронного луча осуществляется внешней магнитной системой, состоящей из длинной фокусирующей катушки ФК, отклоняющих ОК и корректирующих КК катушек.

 

На рис.7.5 представлена эквивалентная схема фотомишени видикона, которая поясняет процесс образования видеосигнала. На этой схеме каждый элемент фотомишени представлен емкостью конденсатора Сэ, образованного элементами сигнальной пластины и правой стороны мишени, который зашунтирован резистором Rэ, изменяющий свое сопротивление в зависимости от интенсивности освещенности этого участка. При отсутствии освещения фотослой имеет высокое – «темновое» сопротивление. При освещении мишени за счет поглощения энергии излучения внутри фотослоя возникают носители тока. При проекции изображения на мишень, сопротивления Rэ оказываются различными. Возникает рельеф сопротивлений. При коммутации пучком медленных электронов потенциал правой стороны мишени устанавливается равным потенциалу катода = 0 (заземлен). Тогда под действием тока луча емкости заряжаются до потенциала сигнальной пластины. Между двумя коммутациями (период кадра) происходит разряд емкостей через элементарные сопротивления, а так как эти сопротивления разные (чем выше освещенность, тем меньше сопротивление), ток разряда будет тоже изменяться (меньше сопротивление – больше ток), и за это время оставшийся заряд на емкостях будет разный (больший ток – сильнее разрядиться емкость – меньше потенциал останется). Таким образом, рельеф сопротивлений преобразуется в потенциальный рельеф. Сигнал изображения образуется при последовательном прохождении участков мишени электронным лучом, выравнивающим рельеф, при этом на неосвещенных участках ток будет почти равен 0, т.к. здесь сопротивление было большим, значит, разряда почти не произошло, и от луча электроны отбираться не будут. А на ярких участках, где произошел почти полный разряд, луч потеряет большое количество электронов, т.е. ток заряда будет большим.

 

Характеристики. Спектральная характеристика видикона определяется свойствами фотомишени (соединения сурьмы, селена, мышьяка, серы) и могут быть чувствительны к инфракрасному, видимому, ультрафиолетовому, рентгеновскому излучениям.

Световая характеристика определяется зависимостью фотопроводимости мишени от освещенности и от заряда конденсатора, т.е. от напряжения на сигнальной пластине. Характеристика нелинейна, причем нелинейность изменяется при различных напряжениях на сигнальной пластине (g = 0,6 – 0,8). Она мало зависит от характера распределения освещенностей, что позволяет обеспечить высокий контраст.

Во время обратного хода луч запирается, т.е. ток полностью отсутствует. Для правильной передачи информации об уровне черного необходимо, чтобы на темных участках изображения тока тоже не было, т.е. не было бы разряда совсем. Но Rэ ¹ ¥, значит небольшой разряд все же будет, и на темных участках протекает «темновой» ток, который отличается от тока во время гасящих импульсов. Причем этот ток зависит от напряжения на сигнальной пластине и может быть неравномерен по мишени. Поэтому при выборе режима работы трубки стремятся к получению минимального “темнового” тока, что увеличивает равномерность сигнала.

 

Полярность сигнала видикона отрицательная.

 

Разрешающая способность характеризуется апертурной характеристикой: структурой, размерами и конечным значением поверхностной проводимости фотомишени, сечением коммутирующего луча. Так при размере рабочего участка мишени 9.5х12.5 мм диаметр сечения луча не должен превышать 15 мкм при токе луча 0.5 мкА, поэтому первоначально были созданы трубки с диаметром мишени до 40 мм, которые обеспечивают вполне приемлемый сигнал при 600 строках. Высокое качество изображения обеспечивается при освещенности мишени в пределах 1-10 лк, что соответствует высокой и средней чувствительности.

Достоинства видикона:

- простота конструкции и малые размеры;

- относится высокая чувствительность;

- способность к передаче информации о постоянной составляющей;

- отсутствие искажений сигнала изображения, связанных с эффектом перераспределения электронов;

- низкая стоимость при высокой надежности трубки.

-

Недостатком видикона является его инерционность, которая проявляется в виде тянущегося следа за движущимися объектами. Различают 2 составляющих инерционности: фотоэлектрическая, которая обусловлена физическими процессами в фотомишени и зависит от материала, количества примеси, технологии изготовления и уровня освещенности; и коммутационная – из-за недостаточного значения тока электронного луча, в результате чего потенциальный рельеф на мишени не успевает выравниваться за период развертки. Инерционность уменьшить можно только за счет уменьшения емкости, т.к. увеличивать ток нельзя без потери разрешающей способности или при увеличении освещенности мишени.

Промышленностью выпускались видиконы с диаметрами колб 13.3, 26.7, 30.4, 38.4 мм (типа ЛИ-415, ЛИ-418, ЛИ-421, ЛИ-426), которые широко использовались в различных ПТУ и кинопроекционных установках.

Для устранения недостатка видикона – его инерционности – используют другие материалы мишени: трубки плюмбикон, кремникон и др.

 

 

ПЛЮМБИКОН

Плюмбикон – название трубки с фотодиодной мишенью из окиси свинца фирмы «Филипс», Нидерланды. Российский аналог называется - глетикон

Широкому использованию видикона в вещательном ТВ препятствует его инерционность, которая складывается из коммутационной и фотоэлектрической составляющих. Для уменьшения фотоэлектрической инерционности необходимо использовать материал с низкой концентрацией ловушек обеспечивающий прохождение носителей тока без рекомбинации, а для уменьшение коммутационной инерционности, необходимо уменьшить емкость элементарного конденсатора мишени за счет изменения его геометрии что приводит к уменьшению времени дозаряда этого конденсатора. Однако, при этом падает постоянная времени разряда Сэ, что приводит к неполному использованию эффекта накопления. Устранение этого недостатка возможно при замене фоторезистивной мишени на мишень фотодиодного типа с p-i-n переходом включенным в обратном направлении. Это обеспечивает малую инерционность фотоэффекта, высокое темновое сопротивление и близкую к линейной световую характеристику.

Конструкция плюмбикона аналогична конструкции видикона ( рис.7.4), отличие заключается в структуре фотомишени, которая представлена на рис.7.6.

Мишень плюмбикона состоит из:

Рис.7.6. Конструкция фотомишени плюмбикона

 

Противоореольный фильтр.

2. Стеклянная планшайба.



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 379; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.94.152 (0.027 с.)