Звезды, их характеристики, источники энергии 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Звезды, их характеристики, источники энергии



Более 90% видимого вещества Вселенной сосредоточено в звездах. Именно звезды и планеты были первыми объектами астрономических исследований.

Характеристики звезд. Основными характеристиками звезд являются:

масса,

радиус,

абсолютная величина, характеризующая ее светимость,

температура,

спектральный класс.

Одна из основных характеристик звезды - светимость определяется, если известна видимая величина и расстояние до нее.

Очень важную информацию о звездах, об их химических свойствах, температуре дает изучение спектров звезд. Характерной особенностью звездных спектров является еще наличие у них огромного количества линий поглощения, принадлежащих различным элементам.

В 1900 г. американский астроном Пикеринг ввел понятие спектрального класса звезды. Спектральные классы звезд обозначаются буквами латинского алфавита O, В, А, F, G, К, М (знающие английский могут их легко запомнить с помощью шутливой мнемонической фразы: “O, Be A Fine Girl, Kiss Me”). Позднее перед классом А был добавлен класс W, а в конце добавлены дополнительные классы R, N, S. Эта система оказалась недостаточно точной, и астрономы разделили каждый интервал в этой последовательности еще на 10 частей – подклассов (например: наше Солнце –это звезда класса Gподкласса 2). Звезда, имеющая больший номер спектрального класса, имеет меньшую температуру поверхности. Таким образом, Солнце, по сравнению с классами O, В, А, F имеет «небольшую» температуру, но в своем классе G – оно является довольно горячей звездой. По цвету звезды можно оценить ее температуру. Так, звезды красного цвета (М) имеют температуруповерхности около 4000 К. Оранжевые звезды имеют более высокую температуру. Желтое солнце (G) нагрето уже до 6000 К, а горячие звезды с температурами больше 10 тыс. К видятся нам белыми и голубыми. Температуры звезд спектрального класса О достигают 40000 - 50000 К. Таким образом, спектральный класс звезды, или ее цвет, характеризует и ее температуру.

Очень важными характеристиками звезды являются ее радиус и масса. Масса оценивается обычно в долях от массы Солнца, например, 1,2 Мс, т.е. в 1,2 раза больше массы Солнца.

Диаграмма Герцшпрунга-Рессела. В 30-е годы 20-го века Герцшпрунг и Рессел обнаружили, что абсолютная величина звезды (светимость) и ее температура (спектр) определенным образом связаны между собой, т.е. если в системе координат «спектр – светимость» обозначать точками звезды с конкретными значениями этих величин, они будут ложиться на координатную плоскость в определенном порядке. Такое графическое представление зависимости абсолютной величины звезды или ее светимости от температуры или спектра получило название диаграммы Герцшпрунга-Рессела, или HRдиаграммы (см. рис. 1).

Источником энергии звезд типа солнца является так называемая протон-протонная реакция – термоядерная реакция синтеза гелия из водорода, которая протекает при высоких температурах (порядка 1013К). При таких температурах атомы теряют свои электронные оболочки и протоны (ядра водорода), благодаря так называемому туннельному эффекту, сталкивается с другим протоном, преодолевая силы кулоновского отталкивания – потенциальный энергетический барьер, окружающий его. При столкновении один из протонов превращается в нейтрон и, таким образом, рождается ядро тяжелого водорода – дейтерия с высвобождением позитрона е+ и нейтрино n. Далее, ядро дейтерия, соединяясь с протоном, образует ядро легкого изотопа гелия и гамма квант g. Окончательная реакция – слияние ядер легкого гелия и высвобождение двух протонов.

 

Галактики и метагалактики

Понятие «галактика» в современном языке обозначает огромную звездную систему. Происходит оно от греческого слона «молоко, молочный» и было введено в обиход для обозначения нашей звездной системы. Она, как известно, видится нам как тянущаяся через все небо светлая полоса с молочным оттенком и названная поэтому «Млечный Путь». Именно в Млечном Пути сосредоточено подавляющее число звезд нашей Галактики, вот почему часто говорят: наша Галактика — это Млечный Путь. Число звезд в ней - несколько сотен миллиардов, т.е. порядка триллиона (1012). Она имеет форму диска с утолщением в центре (см. рис. 2).

Диаметр самого диска, т.е. диаметр нашей Галактики равен приблизительно 1021м, масса Галактики - ~ 1042 кг. Рукава Галактики имеют спиральную форму, т.е. расходятся по спиралям от ядра. В одном из рукавов на расстоянии около 3´1020 м от ядра находится Солнце, расположенное вблизи плоскости симметрии. Самые многочисленные звезды в нашей Галактике — это карлики (массой примерно в 10 раз меньше массы Солнца). Кроме одиночных звезд и их спутников (планет), есть двойные и кратные звезды и целые звездные скопления. движущиеся как единое целое (например, звездное скопление Плеяды). Их открыто в настоящее время более 1000. Шаровые скопления содержат красные и желтые звезды-гиганты и сверхгиганты. Кроме этого, в галактике есть туманности, состоящие в основном из газа и пыли. Межзвездное пространство заполнено полями (электромагнитным и гравитационным) и разреженным межзвездным газом. Галактика вращается вокруг своего центра, причем угловая и линейная скорость с увеличением расстояния от центра изменяются. Линейная скорость движения Солнца вокруг центра Галактики равна 250 км/с, что практически соответствует максимальной линейной скорости звезд. Полный оборот по своей орбите Солнце делает примерно за 200 миллионов лет (2 • 108 лет). Этот период называется галактическим годом.

В начале 20-го в. было доказано, что кроме нашей Галактики существуют и другие, также состоящие из миллиардов звезд. В совокупности они образуют нашу вселенную, или Метагалактику. Одна из ближайших к нам галактик — Туманность Андромеды — находится от нас на расстоянии, примерно 2,5 • 1022 м, ее диаметр равен 1.3 диаметра Млечного Пути, а масса практически равна массе нашей Галактики. Но внешнему виду все галактики делятся на 3 основных типа: эллиптические, спиральные и неправильные.

В 1963 г. во Вселенной были открыты квазизвездные, т.е. звездоподобные источники сильного радиоизлучения. Их назвали квазарами. Это – весьма удаленные от нас объекты Вселенной, расстояние до них порядка 1025 – 1026 м. К настоящему времени их насчитывается более тысячи. Квазары излучают огромное количество энергии. Так, квазизвездный объект размером с Солнечную систему может излучать в 10 раз больше энергии, чем Млечный Путь - наша галактика. Но современным представлениям квазары - это активные ядра далеких галактик или сами эти галактики, которые мы видим "сбоку". Галактики образуют группы, группы образуют систему, крупные системы называются скоплениями: они состоят из сотен и тысяч галактик.

Ближайшее к нам скопление галактик расположено в созвездии Девы и находится на расстоянии около 6´1023 м. Диаметр этого скопления более 1,8´1023 м. Современная внегалактическая астрономия позволяет говорить о сверхскоплениях галактик. К настоящему времени открыты десятки таких сверхскоплений. Все это свидетельствует о том, что Вселенной на самых разных уровнях присуща структурность: от фундаментальных частиц до гигантских сверхскоплений галактик.

Эволюция галактик. Согласно современным представлениям, вначале Галактика представляла собой медленно вращающееся гигантское газовое облако. Под действием сил тяготения (собственной гравитации) оно сжималось. В ходе этого сжатия, или коллапса рождались первые звезды, и происходило постепенное разделение звездной и газовой составляющих Галактики. Выделяющаяся при сжатии энергия гравитации переходила в кинетическую энергию движения звезд и газа. В конце концов кинетическая энергия звезд достигла значения, при котором дальнейшее сжатие поперек оси вращения стало невозможным. Таким образом, подсистема самых старых звезд, возникших в начале коллапса протогалактики, сохранила первоначальную сферическую форму, образовав гало. Сжатие газа вдоль оси вращения продолжалось, что привело к формированию тонкого газового диска. Впоследствии формирующиеся в нем звезды образовали вращающуюся дисковую спиральную подсистему. В результате продолжающейся гравитационной конденсации в Галактике происходит непрерывное образование звезд из межзвездного газа.

В 1944 г. астроном Бааде предложил называть все звезды звездным населением. Самые старые звезды, образующие гало, составляют население I, а средние по возрасту и молодые звезды, расположенные в диске (спиральных рукавах) – население II. Это – звезды Главной последовательности. Из них звезды спектральных классов O и B – самые молодые и горячие, а классов G, K, M – карлики.

Разбегание галактик. В 1929 г. американский астроном Хаббл обнаружил, что линии и спектрах многих галактик смещены к красному концу спектра. Кроме того, оказалось, что чем дальше галактика, тем больше смещение линий. На основе известного из физики эффекта Доплера было сделано заключение, что расстояние между нашей Галактикой и другими галактиками увеличивается. Так как наша Галактика не является центром Вселенной, это означает, что происходит взаимное удаление галактик.

Математически закон Хаббла записывается следующим образом:

V = H×r,

где V – линейная скорость галактики, км/с, r – расстояние до нее, измеряемое в мегапарсеках (Мпк). Н – постоянная Хаббла. По современным данным 50 < H <100 км/(с×Мпк).

Из закона Хаббла следует, что, чем дальше галактики находятся друг от друга, тем с большей скоростью они разбегаются. Следует заметить, что для близких и очень далеких галактик закон Хаббла неточен.

Отметим некоторые особенности расширения Метагалактики.

1. Расширение проявляется только на уровне скоплений и сверхскоплении галактик. Сами галактики и кратные системы звезд не расширяются (этому препятствуют силы тяготения). Таким образом, можно говорить лишь о расширении Вселенной, т.е. Метагалактики.

2. Не существует центра, от которого происходит расширение.

3. Постоянная Хаббла в каждый момент времени одинакова во всей Вселенной, но зависит от времени (со временем убывает).

Время t = 1/Н, называемое космологическим временем, позволяет сравнивать эволюцию объектов, находящихся в разных частях Вселенной.

Расширение Метагалактики говорит о том, что Вселенная нестационарна, она изменяется, эволюционирует, что еще раз подтверждает всеобщий, глобальный характер принципа эволюции.

Эволюция звезд

Известно, что самым распространенным элементом во Вселенной является водород. Второй по распространенности элемент – гелий (по числу атомов – 10% от распространенности водорода, по массе – до 30%). Однако лишь малая часть водорода и гелия содержится в звездах – основное их количество распределено в межзвездном и межгалактическом пространстве. Водород и гелий в межзвездном пространстве находятся, в основном, в атомарном состоянии и служат «исходным сырьем» для образования звезд.

Распределение газа в межзвездном пространстве неоднородно. Средняя плотность вещества в нашей Галактике – примерно 1 атом на 1 см3, но в отдельных областях эта плотность выше, т.е. наблюдаются флуктуации плотности, которые обусловлены хаотическим движением атомов в пространстве. Таким образом, плотность вещества в определенной области может существенно превысить среднюю. Если при этом количество вещества в данной области превосходит определенное критическое значение (приблизительно 1000 солнечных масс), то в этой области возникают сильные гравитационные поля, препятствующие разлету газо-пылевого облака – так называемой глобулы, стремящиеся сжать его до возможно меньших размеров, заставляя вещество падать к её центру облака. Падая, частицы вещества приобретают кинетическую энергию и разогревают газово-пылевое облако. Имеются многочисленные данные, подтверждающие предположение, что звезды образуются при конденсации облаков межзвездной пыли и газа.

Падение вещества к центру сопровождается весьма частыми столкновениями частиц и переходом их кинетической энергии в тепловую. В результате температура глобулы возрастает. Глобула становится зародышем будущей звезды - протозвездой и начинает светиться, так как энергия движения частиц переходит в тепло. В этой стадии протозвезда едва видна, так, как основная доля её излучения приходится на далёкую инфракрасную область. Дальнейшее сжатие протозвезды приводит к такому повышению температуры и давления, что становятся возможными термоядерные реакции синтеза гелия из водорода. Протозвезда «разгорается», становится настоящей звездой и «занимает свое место» на Главной последовательности диаграммы Герцшпрунга-Рессела. При этом силы тяготения, стремящиеся сжать вещество звезды, уравновешиваются силами внутреннего давления. Важную роль здесь играет масса звезды. Если масса звезды велика, последняя при рождении попадает на верхнюю часть главной последовательности, диаграммы Герцшпрунга-Рессела, а если масса мала, то звезда оказывается в нижней её части.

Не так давно астрономы считали, что на образование звезды из межзвёздных газа и пыли требуются миллионы лет. Но в последние годы были получены поразительные фотографии области неба, входящей в состав Большой Туманности Ориона, где в течение нескольких лет появилось небольшое скопление звёзд. На снимках 1947г. в этом месте была видна группа из трёх звездоподобных объектов. К 1954г. некоторые из них стали продолговатыми, а к 1959г. эти продолговатые образования распались на отдельные звёзды. Таким образом, впервые в истории человечества люди наблюдали, рождение звёзд буквально на глазах.

Типичная звезда (подобная Солнцу) большую часть свой жизни медленно «перемещаясь» вдоль Главной последовательности, сжигая свой водород в термоядерной топке. Солнце, например, движется так уже 4,5 миллиарда лет, и будет оставаться на Главной последовательности еще примерно 5 миллиардов лет. Более массивные звезды эволюционируют намного быстрее.

Когда водород в центре звезды исчерпан, она сжимается, что приводит к увеличению температуры и началу другой термоядерной реакции – превращению гелия в углерод. При этом выделяется огромное количество энергии, и светимость звезды возрастает. Выделение энергии приводит к увеличению радиационного давления и, как следствие, к расширению внешних слоев звезды. В результате расширения вещество внешних слоев охлаждается, и излучение звезды становится все более красным, так что звезда резко смещается от главной последовательности. Расширение продолжается до тех пор, пока диаметр звезды не возрастет в 200-300 раз. Звезда при этом превращается в красного гиганта. Через пять с лишним миллиардов лет такая судьба ожидает Солнце. Вначале, все сильнее и сильнее разогреваясь, оно сожжет Землю, а затем, расширяясь, поглотит то, что от нее останется. Упрощенная диаграмма эволюции типичной звезды (эволюционный трек) приведен на рисунке 1.

 

По достижении стадии красного гиганта звезда эволюционирует дальше, и ее положение на диаграмме Герцшпрунга- Рессела сдвигается влево. Примерно через 1% времени жизни звезды она пересекает Главную последовательность. Солнце, например, совершит этот путь приблизительно за 100 млн. лет. В этот период у большинства звезд нарушается динамическое равновесие, и они начинают пульсировать. Это – так называемые цефеиды.

После стадии красного гиганта судьба звезды в значительной степени определяется ее массой М (см. схему на рисунке 2). Звёзды с массой меньшей, чем у Солнца, очень экономно тратят запасы своего ядерного "топлива" и могут светить десятки миллиардов лет. Внешние слои звёзд, подобных нашему Солнцу, с массами не большими 1,4 масс Солнца, постепенно расширяются и, в конце концов, совсем покидают ядро звезды. На месте гиганта остаётся маленький и горячий белый карлик. По образному выражению …белый карлик «вызревает» внутри красного гиганта. После того, как последние запасы белого карлика будут израсходованы, он быстро охлаждается, становясь красным, а затем черным карликом.

Новые и сверхновые звезды. Когда в звезде с М < 1,4 МС израсходуются остатки ядерного горючего она так же, как и «легкая» звезда начинает двигаться вниз на H-R диаграмме. При этом выделение энергии и светимость звезды уменьшаются, однако, прежде чем произойдет значительное охлаждение звезды, она может пройти стадию неустойчивости, на протяжении которой происходят извержения вещества звезды в пространство. При каждом таком извержении происходит резкое увеличение светимости. Такие звезды называются новыми. Наиболее мощные взрывы называются Сверхновыми звездами. В нашей галактике вспышки Сверхновых были зафиксированы в 1054, 1572, 1604 годах. Кроме этого, обнаружено около 10 туманностей – остатков от вспышек Сверхновых, наиболее известной из которых является Крабовидная туманность в созвездии Тельца. В телескопы наблюдались многочисленные сверхновые в других галактиках.

Нейтронные звезды. После взрыва сверхновой ее оболочка сбрасывается, и, распространяясь в разные стороны, образует туманность, в центре которой образуется весьма плотная нейтронная звезда. Вещество такой звезды состоит, в основном, из нейтронов. Эта «нейтронизация» вещества происходит за счет гравитационного коллапса, т.е. сверхмощного сжатия звезды. Нейтронные звезды пульсируют с малым периодом (около 0.001с), однако существуют нейтронные звезды с периодом пульсации порядка 1,4с. Они называются пульсарами. Типичным примером пульсара является нейтронная звезда в Крабовидной Туманности.

Черные дыры. При массах звезд от 2 до 10 МС весьма возможна ситуация, когда после вспышки Сверхновой давление нейтронов уже не может предотвратить гравитационный коллапс. И когда скорость падения в поле тяжести такой звезды становится равной скорости света, гравитационный коллапс неизбежен, и звезда продолжает сжиматься до бесконечности (теоретически – до точечного размера). Для такой звезды существует понятие «гравитационного радиуса» rg, соответствующему критическому размеру звезды. Сфера соответствующего радиуса называется сферой Шварцшильда (в честь немецкого ученого К. Шварцшильда). С точки зрения классической механики гравитационный радиус – это радиус такого тела, из поля тяжести которого не может вырваться свет. Таким образом, когда звезда, сжимаясь достигает критического размера, она перестает излучать, сохраняя способность притягивать («засасывать») все, что оказывается в поле ее тяготения. За это она и получила название «черная дыра».

Впервые существование во Вселенной объектов, обладающих таким полем тяготения, что ничто материальное не может вырваться из их плена, было предсказано еще в 1796 г. Лапласом. Однако вывод о существование черных дыр следует из ОТО (отсюда второе название черных дыр – отоны). Интересно, что сам Альберт Эйнштейн, создавший общую теорию относительности и гравитации, в 1939 году опубликовал статью, где доказывал невозможность их существования. Через несколько месяцев после публикации Эйнштейна появилась статья Роберта Оппенгеймера и его студента Снайдера, в которой на основе теории Эйнштейна было показано, как могут возникать черные дыры.

В настоящее время теория черных дыр разработана в настоящее время достаточно подробно, однако базируется она на совсем ином фундаменте — квантово-статистической механике. Без эффектов, предсказанных именно квантовой статистикой, каждый астрономический объект мог бы случайно «свалиться» в черную дыру и мир был бы совсем не таким, каков он на самом деле.

Можно ли обнаружить черные дыры – ведь они не испускают никакого излучения? Оказывается можно – косвенным путем. Выше уже говорилось о кратных звездных системах (двойных, тройных звездах). Если одним из компонентов тесной звездной системы является черная дыра, невидимая, но обладающая массой, она будет засасывать вещество звезды-спутника, действуя как «прожорливый вампир». Газовый диск вокруг черной дыры разогревается до десятков миллионов градусов Кельвина и становится исключительно мощным источником рентгеновского излучения. Это излучение и можно обнаружить, и оно действительно обнаруживается. Сейчас «подозреваемыми» на черные дыры являются объекты в созвездиях Лебедь, Стрелец, Скорпион и др. Общее же количество черных дыр во Вселенной должно быть очень большим (в одной нашей Галактике их может быть сотни миллионов).



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 608; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.120.204 (0.031 с.)