Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные алгоритмические конструкиии↑ Стр 1 из 2Следующая ⇒ Содержание книги
Поиск на нашем сайте
Элементарные шаги алгоритма можно объединить в следующие алгоритмические конструкции: линейные (последовательные), разветвляющиеся, циклические и рекурсивные. Линейная алгоритмическая конструкция Линейной называют алгоритмическую конструкцию, реализованную в виде последовательности действий (шагов), в которой каждое действие (шаг) алгоритма выполняется ровно один раз, причем после каждого i -го действия (шага) выполняется (i+1) -е действие (шаг), если i -е действие – не конец алгоритма. Разветвляющаяся алгоритмическая конструкция Разветвляющейся (или ветвящейся) называется алгоритмическая конструкция, обеспечивающая выбор между двумя альтернативами в зависимости от значения входных данных. При каждом конкретном наборе входных данных разветвляющийся алгоритм сводится к линейному. Различают неполное (если – то) и полное (если – то – иначе) ветвления. Полное ветвление позволяет организовать две ветви в алгоритме (то или иначе), каждая из которых ведет к общей точке их слияния, так что выполнение алгоритма продолжается независимо от того, какой путь был выбран (рис. 6.2). Неполное ветвление предполагает наличие некоторых действий алгоритма только
Действия 2 L Ложь (Нет) / \^ Истина (Да) Условие
Действия 1 _Г Рис. 6.2. Полное ветвление на одной ветви (то), вторая ветвь отсутствует, т.е. для одного из результатов проверки никаких действий выполнять не надо, управление сразу переходит к точке слияния (рис. 6.3). Пример 6.2. Вывести значение наибольшего из двух чисел. Псевдокод: 1. Ввод двух чисел а, Ь. 2. ЕСЛИ а > Ъ, ТО «выводим а», ИНАЧЕ «выводим Ь». 3. Конец. 297 Ложь (Нет) Рис. 6.3. Неполное ветвление ( Начало J I /Ввод / / «■* / Нет Да Рис. 6.4. Блок-схема к примеру 6.2 В данном примере реализовано полное ветвление. ЕСЛИ значения входных данных таковы, что а > Ь, ТО выполняется линейный алгоритм: 1. Ввод двух чисел а, Ь. 2. Вывод а. ИНАЧЕ, когда а <Ь, выполняется линейный алгоритм: 1. Ввод двух чисел а, Ь. 2. Вывод Ь. Вывод: алгоритм является разветвляющимся и состоит из двух ветвей. Рассмотрим стандартный алгоритм поиска наибольшего (наименьшего) значения среди нескольких заданных. Основная идея алгоритма сводится к следующему: за наибольшее (наименьшее) принимаем значение любого из данных. Поочередно сравниваем оставшиеся данные с наибольшим (наименьшим). Если окажется, что очередное значение входного данного больше (меньше) наибольшего (наименьшего), то наибольшему (наименьшему) присваиваем это значение. Таким образом, сравнив все входные данные, найдем наибольшее (наименьшее) среди них. Алгоритм использует неполное ветвление. Пример 6.3. Заданы три числа. Найти значение наименьшего из них. Заданные числа обозначим: а, Ь, с; результирующее наименьшее — тт. На рис. 6.5 представлена блок-схема алгоритма реше- рИс. 6.5. Алгоритм поиска ния данной задачи. наименьшего значения среди трех заданных КолланЭа «Выбор» Часто при выборе одного из возможных вариантов действий приходится проверять значение выражения на принадлежность заданному набору данных. Для этого существует команда «Выбор». При ее исполнении сначала вычисляется значение некоторого выражения Z. Затем последовательно проверяются условия VI, V2,..., V«относительно Z, начиная с первого, до тех пор, пока не встретится условие, принимающее значение ИСТИНА. Далее выполняется соответствующее этому условию действие (или серия действий), после чего команда выбора завершается. Если ни одно из условий не является истинным, то выполняется действие (или набор действий), идущее по ветви ЛОЖЬ для каждого из условий. На рис. 6.6 представлена блок-схема команды «Выбор» для п = 3.
Рис. 6.6. Команда «выбор»
|
|||||||||||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 307; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.105.127 (0.007 с.) |