Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общие подходы к построению парольных системСодержание книги
Поиск на нашем сайте
Наиболее распространенные методы аутентификации основаны на применении многоразовых или одноразовых паролей. Из-за своего широкого распространения и простоты реализации парольные схемы часто в первую очередь становятся мишенью атак злоумышленников. Эти методы включают следующие разновидности способов аутентификации; • по хранимой копии пароля или его свёртке (plaintext-equivalent); • по некоторому проверочному значению (verifier-based); • без непосредственной передачи информации о пароле проверяющей стороне (zero-knowledge); • с использованием пароля для получения криптографического ключа (cryptographic). В первую разновидность способов входят системы аутентификации, предполагающие наличие у обеих сторон копии пароля или его свертки. Для организации таких систем требуется создать и поддерживать базу данных, содержащую пароли или сверки паролей всех пользователей. Их слабой стороной является то, что получение злоумышленником этой базы данных позволяет ему проходить аутентификацию от имени любого пользователя. Способы, составляющие вторую разновидность, обеспечивают более высокую степень безопасности парольной системы, так как проверочные значения, хотя они и зависят от паролей, не могут быть непосредственно использованы злоумышленником для аутентификации. Наконец, аутентификация без предоставления проверяющей стороне какой бы то ни было информации о пароле обеспечивает наибольшую степень защиты. Этот способ гарантирует безопасность даже в том случае, если нарушена работа проверяющей стороны (например, в программу регистрации в системе внедрен "троянский конь"). Пример системы парольной защиты ("доказательство с нулевым разглашением"), построенной по данному принципу, будет рассмотрен ниже. Особым подходом в технологии проверки подлинности являются криптографические протоколы аутентификации. Такие протоколы описывают последовательность действий, которую должны совершить стороны для взаимной аутентификации, кроме того, эта действия, как правило, сочетаются с генерацией и распределением криптографических ключей для шифрования последующего информационного обмена. Корректность протоколов аутентификации вытекает из свойств задействованных в них математических и криптографических преобразований и может быть строго доказана. Обычные парольные системы проще и дешевле для реализации, но менее безопасны, чем системы с криптографическими протоколами. Последние обеспечивают более надежную защиту и дополнительно решают задачу распределения ключей. Однако используемые в них технологии могут быть объектом законодательных ограничений. Для более детального рассмотрения принципов построения парольных систем сформулируем несколько основных определений. Идентификатор пользователя - некоторое уникальное количество информации, позволяющее различать индивидуальных пользователей парольной системы (проводить их идентификацию). Часто идентификатор также называют именем пользователя или именем учетной записи пользователя. Пароль пользователя - некоторое секретное количество информации, известное только пользователю и парольной системе, которое может быть запомнено пользователем и предъявлено для прохождения процедуры аутентификации. Одноразовый пароль дает возможность пользователю однократно пройти аутентификацию. Многоразовый пароль может быть использован для проверки подлинности повторно. Учетная запись пользователя - совокупность его идентификатора и его пароля. База данных пользователей парольной системы содержит учетные, записи всех пользователей данной парольной системы. Под парольной системой будем понимать программно-аппаратный комплекс, реализующий системы идентификации и аутентификации пользователей АС на основе одноразовых или многоразовых паролей. Кая правило, такой комплекс функционирует совместно с подсистемами разграничения доступа и регистрации событий. В отдельных случаях парольная система может выполнять ряд дополнительных функций, в частности генерацию и распределение кратковременных (сеансовых) криптографических ключей Основными компонентами парольной системы являются: • интерфейс пользователя; • интерфейс администратора; • модуль сопряжения с другими подсистемами безопасности; • база данных учетных записей. Парольная система представляет собой "передний край обороны" всей системы безопасности. Некоторые ее элементы (в частности, реализующие интерфейс пользователя) могут быть расположены в местах, открытых для доступа потенциальному злоумышленнику. Поэтому парольная система становится одним из первых объектов атаки при вторжении злоумышленника в защищенную систему. Ниже перечислены типы угроз безопасности парольных систем. 1. Разглашение параметров учетной записи через: • подбор в интерактивном режиме; • подсматривание; • преднамеренную передачу пароля его владельцем другому лицу; • захват базы данных парольной системы (если пароли не хранятся в базе в открытом виде, для их восстановления может потребоваться подбор или дешифрование); • перехват переданной по сети информации о пароле; • хранение пароля в доступном месте. 2. Вмешательство в функционирование компонентов парольной системы через: • внедрение программных закладок; • обнаружение и использование ошибок, допущенных на стадии разработки; • выведение из строя парольной системы. Некоторые из перечисленных типов угроз связаны с наличием так называемого человеческого фактора, проявляющегося в том, что пользователь может: • выбрать пароль, который легко запомнить и также легко подобрать; • записать пароль, который сложно запомнить, и положить запись в доступном месте; • ввести пароль так, что его смогут увидеть посторонние; • передать пароль другому лицу намеренно или под влиянием заблуж: дения. В дополнение к выше сказанному необходимо отметить существование "парадокса человеческого фактора". Заключается он в том, что пользователь нередко стремится выступать скорее противником парольной системы, как, впрочем, и любой системы безопасности, функционирование которой влияет на его рабочие условия, нежели союзником системы защиты, тем самым ослабляя ее. Защита от указанных угроз основывается на ряде перечисленных ниже организационно-технических мер и мероприятий. Выбор паролей В большинстве систем пользователи имеют возможность самостоятельно выбирать пароли или получают их от системных администраторов. При этом для уменьшения деструктивного влияния описанного выше человеческого фактора необходимо реализовать ряд требований к выбору и использованию паролей (табл.1).
Таблица 1
Параметры для количественной оценки стойкости парольных систем приведены в табл.2. Таблица 2
В качестве иллюстрации рассмотрим задачу определения минимальной мощности пространства паролей (зависящей от параметров А и L) в соответствии с заданной вероятностью подбора пароля в течение его срока действия. Задано P=10-6. Необходимо найти минимальную длину пароля, которая обеспечит его стойкость в течение одной недели непрерывных попыток подобрать пароль. Пусть скорость интерактивного подбора паролей V=10 паролей/мин. Тогда в течение недели можно перебрать 10.60.24.7 = 100800 паролей. Далее, учитывая, что параметры S, V. Т и Р связаны соотношением Р P=V .T/S, получаем S=100.800/10-6=1,008-1011≈1011. Полученному значению S соответствуют пары: A=26, L=8 и A=36, L=6
Хранение паролей Другим важным аспектом стойкости парольной системы, является способ хранения паролей в базе данных учетных записей. Возможны следующие варианты хранения паролей: • в открытом виде; • в виде свёрток (хеширование); • зашифрованными на некотором ключе. Наибольший интерес представляют второй и третий способы, которые имеют ряд особенностей. Хеширование не обеспечивает защиту от подбора паролей по словарю в случае получения базы данных злоумышленником. При выборе алгоритма хеширования, который будет использован для вычисле сверток паролей, необходимо гарантировать несовпадение эначений сверток, полученных на основе различных паролей пользователей. Кроме того, следует предусмотреть механизм, обеспечивающий уникальность сверток в том случае, если два пользователя выбирают одинаковые пароли. Для этого при вычислении каждой свертки обычно используют некоторое количество "случайной" информации, например, выдаваемой генератором псевдослучайных чисел. При шифровании паролей особое значение имеет способ генерации и хранения ключа шифрования базы данных учетных записей. Перечислим некоторые возможные варианты: • ключ генерируется программно и хранится в системе, обеспечивая возможность ее автоматической перезагрузки; • ключ генерируется программно и хранится на внешнем носителе, с которого считывается при каждом запуске; • ключ генерируется на основе выбранного администратором пароля, который вводится в систему при каждом запуске. Во втором случае необходимо обеспечить невозможность автоматического перезапуска системы, даже если она обнаруживает носитель с ключом. Для этого можно потребовать от администратора подтверждать продолжение процедуры загрузки, например, нажатием клавиши на клавиатуре. Наиболее безопасное хранение паролей обеспечивается при их хешировании и последующем шифровании полученных сверток, т.е. при комбинации второго и третьего способов. Введение перечисленных выше количественных характеристик парольной системы (см.табл.2.2) позволяет рассмотреть вопрос о связи стойкости парольной системы с криптографической стойкостью шифров в двух аспектах: при хранении паролей в базе данных и при их передаче по сети. В первом случае стойкость парольной системы определяется её способностью противостоять атаке злоумышленника, завладевшего базой данных учетных записей и пытающегося восстановить пароли, и зависит от скорости "максимально быстрой" реализации используемого алгоритма хеширования. Во втором случае стойкость парольной системы зависит от криптографических свойств алгоритма шифрования или хеширования паролей. Если потенциальный злоумышленник имеет возможность перехватывать передаваемые по сети преобразованные значения паролей, при выборе алгоритма необходимо обеспечить невозможность (с заданной вероятностью) восстановить пароль при наличии достаточного количества перехваченной информации. Проиллюстрируем приведенные рассуждения на конкретном примере. Для шифрования паролей в системах UNIX до середины 1970-х годов использовался алгоритм, эмулирующий шифратор M-209 американской армии времён второй мировой войны. Это был надёжный алгоритм, но он имел очень быструю для тех лет реализацию. На компьютере PDP-11/70 можно было зашифровать 800 паролей в секунду, и словарь из 250000 слов мог быть проверен менее чем за 5 минут. С конца 70-х для этих целей стал применяться алгоритм шифрования DES. Пароль использовался для генерации ключа, на котором шифровалась некоторая постоянная для всех паролей величина (как правило, строка, состоящая из одних нулей). Для предотвращения одинаковых свёрток от одинаковых паролей в качестве дополнительного параметра на вход алгоритма вычисления свертки подавалось значение, вырабатываемое генератором псевдослучайных чисел. Реализации алгоритма DES работали значительно медленнее. На компьютере mVAX-II (более быстром, чем PDP-11/70) можно было сделать в среднем 3,6 операций шифрования в секунду. Проверка словаря из 250000 слов длилась бы 19 часов, а проверка паролей для 50 пользователей - 40 дней. В последнее время в некоторых UNIX-системах используется алгоритм MD5, ещё более медленный по сравнению с DES. Однако современные реализации криптографических алгоритмов позволяют производить сотни тысяч итераций алгоритма в секунду. Учитывая, что пользователи нередко выбирают недостаточно стойкие пароли, можно сделать вывод, что получение базы данных учетных записей или перехват переданного по сети значения свертки пароля представляют серьёзную угрозу безопасности парольной системы. Передача пароля по сети В большинстве случаев аутентификация происходит в распределённых системах и связана с передачей no-сети информации о параметрах учетных записей пользователей. Если передаваемая по сети в процессе аутентификации информация не защищена надлежащим образом, возникает угроза ее перехвата злоумышленником и использования для нарушения защиты парольной системы. Известно, что многие компьютерные системы позволяют переключать сетевой адаптер в режим прослушивания адресованного другим получателям сетевого трафика в сети, основанной на широковещательной передаче пакетов данных. Напомним основные виды защиты сетевого трафика: • физическая защита сети; • оконечное шифрование; • шифрование пакетов. Распространены следующие способы передачи по сети паролей: • в открытом виде; • зашифрованными; • в виде свёрток; • без непосредственной передачи информации о пароле ("доказательство с ну-левым разглашением"). Первый способ применяется и сегодня во многих популярных приложениях (например, TELNET, FTP и других). В защищенной системе его можно применять только в сочетании со средствами защиты сетевого трафика. При передаче паролей в зашифрованном виде или в виде сверток по сети с открытым физическим доступом возможна реализация следующих Уфоз безопасности парольной системы: • перехват и повторное использование информации; • перехват и восстановление паролей; • модификация передаваемой информации с целью введения в заблуждение проверяющей стороны; • имитация злоумышленником действий проверяющей стороны для введения в заблуждение пользователя. Схемы аутентификации "с нулевым знанием" или "с нулевым разглашением", впервые появились в середине 80-х - начале 90-х годов. Их основная идея, заключается в том, чтобы обеспечить возможность одному из пары субъектов, доказать истинность некоторого утверждения второму, при этом не сообщая ему никакой информации о содержании самого утверждения. Например, первый субъект ("доказывающий") может убедить второго ("проверяющего"), что знает определенный пароль, в действительности не передавая тому никакой информации о самом пароле. Эта идея и отражена в термине "доказательство с нулевым разглашением". Применительно к парольной защите это означает, что если на месте проверяющего субъекта оказывается злоумышленник, он не получает никакой информации о доказываемом утверждении и, в частности, о пароле. Общая схема процедуры аутентификации с нулевым разглашением состоит из последовательности, информационных обменов (итераций) между двумя участниками процедуры, по завершению которой проверяющий с заданной вероятностью делает правильный вывод об истинности проверяемого утверждения. С увеличением числа итераций возрастает вероятность правильного, распознавания истинности (или ложности) утверждения. Классическим примером неформального описания системы аутентификации с нулевым разглашением служит так называемая пещера Али-Бабы. Пещера имеет один вход (рис. 1). путь от которого разветвляется A Рис. 1. Пример системы аутентификации с нулевым разглашением (пещера Али-Бабы). в глубине пещеры на два коридора, сходящихся затем в одной точке, где установлена дверь с замком. Каждый, кто имеет ключ от замка, может переходить из одного коридора в другой в любом направлении. Одна итерация алгоритма состоит из последовательности шагов: 1. Проверяющий становится в точку А. 2. Доказывающий проходит в пещеру и добирается до двери (оказывается в точке С или D). Проверяющий не видит, в какой из двух коридоров тот свернул. 3. Проверяющий приходит в точку В и' в соответствии со своим выбором просит доказывающего выйти из определенного коридора. 4. Доказывающий, если нужно, открывает дверь ключом и выходит из названного проверяющим коридора. Итерация.повторяется столько раз, сколько требуется для распознавания истинности утверждения "доказывающий владеет ключом от двери" с заданной вероятностью. После i-й итерации вероятность того, что проверяющий попросит доказывающего выйти из того же коридора, в который вошел доказывающий, равна (1/2)i. Еще одним способом повышения стойкости парольных систем, связанной с передачей паролей по сети, является применение одноразовых (one-time) паролей. Общий подход к применению одноразовых паролей основан на последовательном использовании хеш-функции для вычисления очередного одноразового пароля на основе предыдущего. В начале пользователь получает упорядоченный список одноразовых паролей, последний из которых также сохраняется в системе аутентификации. При каждой регистрации пользователь вводит очередной пароль, а система вычисляет его свертку и сравнивает с хранимым у себя эталоном. В случае совпадения пользователь успешно проходит аутентификацию, а введенный им пароль сохраняется для использования в качестве эталона при следующей регистрации. Защита от сетевого перехвата в такой схеме основана на свойстве необратимости хеш-функции. Наиболее известные практические реализации схем с одноразовыми паролями - это программный пакет S/KEY и разработанная на его основе система OPIE.
|
|||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2017-01-27; просмотров: 1951; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.96.17 (0.01 с.) |