Электродинамическое и термическое действие токов КЗ. Методы ограничения токов КЗ. Реакторы и сдвоенные реакторы. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Электродинамическое и термическое действие токов КЗ. Методы ограничения токов КЗ. Реакторы и сдвоенные реакторы.



Электродинамическую силу взаимодействия м/у двумя параллельными проводниками (рис. 1) произвольного сечения, обтекаемые токами i 1и i 2,определяют по формуле

F=2.04·k ф i 1 i 2· l/a· 10-8, кГ ,

где i 1 и i 2 – мгновенные значения токов в проводниках, a; l – длина параллельных проводников, см; a – расстояние м/у осями проводников, см; k ф- коэффициент формы.

Сила взаимодействия двух параллельных проводников равномерно распределена по их длине. В практических расчетах эту равномерно распределенную силу заменяют результирующей силой F, приложенной к проводникам в середине их длины.

При одинаковом направлении токов в проводниках они притягиваются, а при разном – отталкиваются.

Коэффициент формы k ф зависит от формы сечения проводников и их взаимного расположения. Для круглых и трубчатых проводников k ф=1; для проводников других форм сечения принимают k ф=1 в тех случаях, когда сечение проводников мало, а длина их велика по сравнению с расстоянием м/у ними и можно предположить, что весь ток сосредоточен в оси проводника. Так, принимают k ф=1 при определении сил взаимодействия м/у фазами шинных конструкций распределительных устройств независимо от формы сечения шин, т.к. расстояние м/у шинами разных фаз в распределительных устройствах достаточно велики и составляют несколько сотен миллиметров и более.

Если расстояние м/у проводниками (шинами) прямоугольных, коробчатых и других сечений мало, то k ф≠1.

Сила, действующая на проводник с током, определяется как результат взаимодействия его с токами в проводниках двух других фаз, при этом в наиболее тяжелых условиях оказывается проводник средней фазы. Наибольшее удельное усилие на проводник средней фазы может быть определено из выражения, Н/м,

f=√3·10-7· k ф·I2m/a,

где Im – амплитуда тока в фазе, А; a – расстояние м/у соседними фазами, м.

Коэффициент √3 учитывает фазовые смещения токов в проводниках.

Взаимодействие проводников существенно возрастает в режиме КЗ, когда полный ток КЗ достигает своего наибольшего значения – ударного. При оценке взаимодействия фаз необходимо рассматривать двухфазное и трехфазное КЗ.

Для определения удельного усилия при трехфазном КЗ в системе проводников пользуются выражением

f(3)=√3·10-7· k ф· i( 3)2у/a,

где i(3)у – ударный ток трехфазного КЗ, А.


В случае двухфазного КЗ влияние третьей (неповрежденной) фазы ничтожно мало, принимая во внимание, что ׀ i1 ׀ =‌ ׀ i2‌| = |i(2)2у|. Следовательно,

f(2)=2•10-7• kф•i(2)2у/a,

где i(2)у – ударный ток двухфазного КЗ, А.

Учитывая, что междуфазное усилие при трехфазном КЗ больше, чем при двухфазном. Поэтому расчетным видом КЗ при оценке электродинамических сил считают трехфазное.

Для предотвращения механических повреждений под действием усилий, возникающих в проводниках при протекании по ним токов КЗ, все элементы токоведущей конструкции должны обладать достаточной электродинамической стойкостью.

Под электродинамической стойкостью понимают обычно способность аппаратов или проводников выдерживать механические усилия, возникающие при протекании токов КЗ, без деформаций, препятствующих их дальнейшей нормальной работе.

Термическое действие токов КЗ. При протекании тока КЗ температура проводника повышается. Длительность процесса КЗ обычно мала (в пределах нескольких секунд), поэтому тепло, выделяющееся в проводнике, не успевает передаться в окружающую среду и практически целиком идет на нагрев проводника. Проводник или аппарат следует считать термически стойким, если его температура в процессе КЗ не превышает допустимых величин.

Определить температуру нагрева проводника в процессе КЗ можно следующим путем. При КЗ за время dt в проводнике выделяется определенное количество тепла

dQ=I2k,trθdt,

где Ik,t – действующее значение полного тока КЗ в момент t КЗ; rθ – активное сопротивление проводника при данной его температуре θ:

rθ = ρ0(1+αθ) l / q,

здесь ρ0 – удельное активное сопротивление проводника при θ=00; l – длина проводника; q – его сечение; α - температурный коэффициент сопротивления.

Практически все тепло идет на нагрев проводника

dQ=Gcθdθ,

где G – масса проводника; cθ – удельная теплоемкость материала проводника при температуре θ.

Процесс нагрева при КЗ определяется уравнением

I2k,trθdt= Gcθdθ.

При выборе электрических аппаратов обычно не требуется определять температуру токоведущих частей, поскольку завод- изготовитель по данным специальных испытаний и расчетов гарантирует время и среднеквадратичный ток термической стойкости. Другими словами, в каталогах приводиться значение гарантированного импульса среднеквадратичнаго тока КЗ, который выдерживается аппаратом без повреждений, препятствующих дальнейшей нормальной работе. Условие проверки термической стойкости в этом случае следующее:

Bк≤I2 тер t тер,

где Bк – расчетный импульс квадратичного тока КЗ, определяемый по изложенной выше методике; I тер и t тер – соответственно среднеквадратичный ток термической стойкости и время его протекания (номинальное значение).

На действия токов короткого замыкания проверяют


1) на динамическую устойчивость – аппараты и проводники, защищенные плавкими предохранителями с вставками на номинальные токи до 60 А включительно; электрооборудование, защищенное токоограничивающими плавкими предохранителями на большие номинальные токи, следует проверять на динамическую устойчивость по наибольшему мгновенному значению тока КЗ, пропускаемого предохранителем.

На термическую устойчивость – аппараты и проводники, защищенные плавкими предохранителями на любые номинальные токи,

2) проводники в цепях к индивидуальным электроприемникам, в том числе к цеховым трансформаторам общей мощностью до 1000кВА и с первичным напряжением до 20 кВ включительно, если в электрической части предусмотрено необходимое резервирование, при котором отключение этих приемников не вызывает расстройства производственного процесса, если повреждение проводников не может вызвать взрыва и если замена поврежденных проводников без особых затруднений.

3) проводники в цепях к индивидуальным электроприемникам и отбельным распределительным пунктам неответственного назначения при условии, что их повреждение при КЗ не может явиться причиной взрыва

 

Реакторы служат для ограничения токов КЗ в мощных электроустановках, а также позволяют поддерживать на шинах определенный уровень напряжения при повреждениях за реактором.

Основная область применения реакторов - электрические сети напряжением 6 - 10 кВ и выше, а также при напряжении ниже 1000 В.

Реактор представляет собой индуктивную катушку, не имеющую сердечника из магнитного материала. Благодаря этому он обладает постоянным индуктивным сопротивлением, не зависящим от протекающего тока.

Возможные схемы включения реакторов.

Схема включения реакторов:

а - индивидуальное реактирование;

б - групповой реактор;

в - секционный реактор

Основным параметром реактора является его индуктивное сопротивление

хр = wL, Ом. В некоторых каталогах приводится: ,

где Iном - номинальный ток реактора, А; Uном - номинальное напряжение реактора, В.

Потеря напряжения в реакторе при протекании тока I и заданном значении cosj определяется из выражения: ,


где Uном - номинальное напряжение установки, где используется реактор.

Допустимая потеря напряжения в реакторе обычно не превышает 1,5 - 2%.

Сдвоенные реакторы

В электроустановках применяют сдвоенные реакторы. Конструктивно они подобны обычным реакторам, но от средней точки обмотки имеется дополнительный вывод.

Преимуществом сдвоенного реактор является то, что в зависимости от схемы включения и направления токов в обмотках индуктивное сопротивление его может увеличиваться или уменьшаться. Это свойство сдвоенного реактора обычно используется для уменьшения падения напряжения в нормальном режиме и ограничения токов КЗ.

Ветви реактора выполняются на одинаковый номинальный ток Iном, а средний вывод - на удвоенный номинальный ток ветви 2Iном. За номинальное сопротивление сдвоенного реактора принимают сопротивление ветви обмотки при отсутствии тока в другой ветви

хр = хв = wL или ,

где L - индуктивность ветви реактора.

Выбор реакторов

Реакторы выбираются по номинальным напряжению, току и индуктивному сопротивлению.

Номинальное напряжение выбирают в соответствии с номинальным напряжением установки. При этом предполагается, что реакторы должны длительно выдерживать максимальные рабочие напряжения, которые м.и. место в процессе эксплуатации. Допускается использование реакторов в ЭУ с номинальным напряжением, меньшим номинального напряжения реакторов.

Номинальный ток реактора (ветви сдвоенного реактора) не может быть меньше максимального длительного тока нагрузки цепи, в которую он включен:

.

Для шинных (секционных) реакторов номинальный ток подбирается в зависимости от схемы их включения.

Индуктивное сопротивление реактора определяют, исходя из условий ограничения тока КЗ до заданного уровня. В большинстве случаев уровень ограничения тока КЗ определяется по коммутационной способности выключателей, намечаемых к установке или установленных в данной точке сети.

Электродинамическая стойкость реактора гарантируется при соблюдении следующего условия:

,

где - ударный ток при трехфазном КЗ за реактором; - ток электродинамической стойкости реактора.

Термическая стойкость реактора характеризуется заводом-изготовителем величиной tтер - время термической стойкости и среднеквадратичным током термической стойкости Iтер = iдин / 2,54. Поэтому условие термической стойкости реактора имеет вид:


,

где Вк - расчетный импульс квадратичного тока при КЗ за реактором.

LR это индукционная катушка, не имеющая сердечника из магнитного материала. Благодаря этому LR обладает постоянной индуктивным R(ХL), не зависимым от протекания I.

Схемы вкл-я: индивидуальная; групповая; секционная(между секциями шин).

Основными параметрами LR явл-я:

ХL=XP=WL;

XP,%=(XP×31\2×IHOM/UHOM) ×100%;

Потери U в LR опр-я по ф-ле: U=XP× (31\2×IHOM×sin(F)/UHOM) ×100% и составляет от 1,5-2%.

Сдвоенные LR- конструктивно аналогичны, но от средней точки обмотки имеется дополнительный вывод. Ветви вып-ся на одинаково ном. ток, а средний вывод на 2Iн. R определяются аналогично.

Выбор LR: по Uном (LR должны длит-но выд-ть max рабочее U, кот-е имеют место в процессе экспл-ии Uном.раб. > Uсети); по Iном (I ном.р.≥Imax); LR определяют из условия ограничения Iкз до заданного уровня; LR пров-т по эл. дин-й и термической стойкости.

Схемы внутрицехового распределения электроэнергии. (380 В)

Схемы могут быть: магистральными, радиальными, смешанными и модульными.

Магистральные схемы

При магистральной схеме питание от подстанции к отдельным узлам нагрузки и мощным приемникам передается по отдельной линии.

Магистральные силовые питающие сети рекомендуется применять:

- для питания силовых и осветительных нагрузок, распределенных относительно равномерно по площади цеха;

- для питания группы ЭП, принадлежащих к одной технологической линии;

- в энергоемких производствах при распределении электроэнергии от трансформаторов 1600 и 2500 кВ·А, что позволяет конструктивно упростить вывод мощности с подстанции;

- при создании модульных сетей для производств с равномерно распределенной нагрузкой по площади цеха;

- при частых заменах технологического оборудования.

Чаще всего такие схемы применяются в цехах машиностроительных заводов, в цехах цветной металлургии, на предприятиях приборостроения и др.

Магистральные сети выполняются шинопроводами или кабелями.

Рис.1. Схема подключения магистралей к КТП через автоматы отходящих линий

рис.2. Схема «блок трансформатор-магистраль»


Подключение магистрали к сборным шинам распределительного устройства (РУ) комплектной трансформаторной подстанции (КТП) осуществляется через линейные автоматические выключатели или наглухо, без коммутационного аппарата (рис. 1, 2). В случае глухого подключения, защита магистрали осуществляется вводным выключателем QF 1.

Магистрали могут выполняться голыми шинами или комплектными шинопроводами типа ШМА. В случае глухого присоединения магистрали схема носит название «блок трансформатор-магистраль». Такие схемы просты, надежны и экономичны, могут быть реализованы при применении комплектных и некомплектных трансформаторных подстанции. Схемы блоков трансформатор-магистраль следует применять с числом отходящих от КТП магистралей, не превышающих числа установленных трансформаторов, пропускная способность ШМА не должна превышать пропускную способность питающего трансформатора с учетом его перегрузочной способности в послеаварийном режиме.

Рис.3. Схема подключения магистралей к двухтрансформаторной подстанции

 

Рис.4. Схема подключения магистралейкоднотрансформаторной подстанции

Магистральные схемы, выполненные шинопроводами, относятся к высоконадежным элементам системы электроснабжения. Их можно применять для питания потребителей любой категории надежности. Если требуется резервирование питания, то применяют двухтрансформаторные подстанции с установкой АВР на секционном выключателе (рис.3).

При использовании однотрансформаторных подстанций, секционный выключатель устанавливается в цехе (рис.4). Для снижения электротравматизма этот выключатель должен быть сблокирован с выключателем, установленным на подстанции. Для приемников 1-ой категории надежности может быть применена схема питания от двух магистралей (рис.5). Она целесообразна для энергоемких потребителей. ЩС1 и ЩС2, питающие ответственные потребители, получают питание от двух магистралей, менее ответственные потребители питаются от одной магистрали (РП1 и РП2).

Рис.5. Схема питания потребителей I категории от двух магистралей


Рис.6 Схема блока «ТП -щит»

Магистральные сети, выполненные комплектными шинопроводами имеют высокую стоимость, поэтому они должны иметь не менее трех ответвлений с токами не менее 250 А. При сложных трассах (большое число поворотов, разные отметки и др.) целесообразно отдельные участки шинопроводов заменять многоамперными кабелями. Их рекомендуется прокладывать на минимально допустимой ПУЭ высоте от уровня пола или площадки обслуживания - 2,5 м.

Для электроприемников I и II категории надежности электроснабжения при их компактном расположении в цехе рекомендуется применять схему «блок ТП -щит» (рис.6).

При расположении ТП и щитов в одном помещении или в соседних помещениях не требуется установка коммутационных аппаратов на магистралях и шины щита следует рассматривать как продолжение сборных шин ТП. Такие схемы рациональны при питании от ТП группы электродвигателей насосов, компрессоров, вентиляторов.

Магистральные схемы, выполненные комплектными шинопроводами типа ШМА-68 Н-1600 А, допускающими кратковременные перегрузки, используются для питания машин контактной сварки. При использовании таких шинопроводов соединение секций должно быть выполнено сваркой. Питание электроосвещения, устройств бесконтактной автоматики и других потребителей, предъявляющих повышенные требования к качеству электроэнергии при этом должно осуществляться от отдельных трансформаторов.

Магистральные схемы, выполненные шинопроводами следует прокладывать в

Рис.7. Схема кабельных магистралей

зонах, где их повреждение транспортом или перемещенными грузами маловероятно.

Ответвления от магистральных шинопроводов длиной до 6 м к вводным устройствам технологического оборудования, к щитам, распределительным пунктам и другим электроустройствам, имеющим на вводе аппараты защиты выполняется без автоматических выключателей на шинопроводах. При больших длинах ответвлений подключение к магистральному шинопроводу осуществляется через вводной аппарат.

В тех случаях, когда характер среды в цехе или размещение технологического оборудования по площади цеха, делают невозможным применение магистральных


шинопроводов, используют кабельные магистрали (рис.7). Сечение кабельных магистралей одинаково по всей длине.

Достоинствам магистральных схем является: высокая гибкость сети, дающая возможность перестановок технологического оборудования без переделки сети. Недостатком - меньшая надежность по сравнению с радиальными схемами. т.к. при аварии на магистрали все подключенные к ней ЭП теряют питание.

Радиальная схема

Радиальная схема - это такая, когда питание одного достаточно мощного потребителя или группы потребителей осуществляется от ТП или вводного устройства по отдельной питающей линии.

Радиальные схемы выполняются одноступенчатыми, когда питание осуществляется непосредственно от ТП и РП3 (рис.8) и двухступенчатыми, когда питание осуществляется от промежуточного РП (РП2).

Рис.8. Радиальная схема распределения электроэнергии

Радиальные схемы применяют для питания сосредоточенных нагрузок большой мощности, при неравномерном размещении приемников в цехе или на отдельных его участках, а также при питании приемников во взрывоопасных, пожароопасных и пыльных помещениях, где невозможно применение магистральных схем. Они выполняются кабелями или проводами, прокладываемыми открыть, в трубах, в специальных каналах.К достоинствам радиальных схем относятся их высокая надежность и удобство автоматизации, поэтому они рекомендуются для питания потребителей I категории.

К недостаткам этих схем относятся: значительный расход проводникового материала, ограниченная гибкость сети при перемещениях технологического оборудования, необходимость в дополнительных площадях для размещения силовых РП.

Распределительные сети. Питание отдельных потребителей в цехе осуществляется от распределительных шинопроводов, распределительных щитов и пунктов. Выбор схемы распределения зависит от условий среды в цехе, от размещения и габаритов технологического оборудования, от особенностей подъемно-транспортных работ в цехе. При номинальном характере среды в цехе и расположении оборудования рядами для распределения электроэнергии используют комплектные шинопроводы типа ШРА, выпускаемые на номинальные токи 250, 400, 630 А. С целью рационального использования шинопроводов количество подключенных потребителей должно быть не менее двух на каждые шесть метров ШРА.

Радиальные схемы распределения сетей с силовыми пунктами, на которых установлены аппараты защиты ответвлений, следует применять в местах, где применению ШРА препятствуют наличие кранов, условия среды, условия территориального распределения электроприемников и другие условия. При этом


распределительные устройства должны располагаться как можно ближе к электроприемникам.

Смешанные схемы

Наибольшее распространение имеют смешанные (комбинированные) схемы, сочетающие в себе элементы радиальных и магистральных схем и пригодные для любой категории электроснабжения. Такие схемы применяются в прокатных и мартеновских цехах металлургической промышленности, в котельных и механосборочных цехах и т.п. В смешанных схемах от главных питающих магистралей и их ответвлений электроприемники питаются через распределительные шкафы РШ или шинопроводы ШРА в зависимости от расположения оборудования в цехе. На участках с малой нагрузкой. где прокладка распределительных шинопроводов нецелесообразна. устанавливаются распределительные шкафы, присоединяемые к ближайшим шинопроводам.

Модульная сеть

Модульная сеть представляет собой прокладку проводов под полом в трубах с разветвительными коробками, над которыми устанавливаются напольные колонки (коммутационный аппарат, муфта, трубная секция и т.д.). Сеть называется модульной, т.к. ответвительные коробки для присоединения ЭП выполняются с заданным шагом (модулем) 1,5 - 6 м в зависимости от характера производства и габаритов технологического оборудования. Модульная магистраль рассчитана на максимальный ток 100 А. Модульные сети применяются на предприятиях машиностроения, приборостроения и др. отраслей производства в тех случаях, когда возможна частая перепланировка технологических агрегатов и предъявляются особые требования к стерильности и эстетике производства. применение модульной сети делает электротехническую часть производства независимой от размещения технологического оборудования.



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 557; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.218.230 (0.049 с.)