Имитационные математические модели 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Имитационные математические модели



Модели динамических систем можно написать в замкнутой форме в виде системы дифференциальных и алгебраических уравнений и попробовать получить ее решение в аналитическом виде. Для этого придется проделать множество аналитических преобразований с целью получения соотношений, поддающихся аналитическому решению. Однако, на пути получения аналитических решений имеется ряд практически не преодолимых трудностей, связанных с нелинейностью, с большой размерностью полученной системы соотношений, с наличием, множества нелинейных логико-семантических операций. В этом случае, возможно численное решение системы соотношений модели на компьютере. При этом наличие упомянутых трудностей так же препятствует проведению промежуточных аналитических преобразований с целью получения наиболее компактных соотношений для численного моделирования. Но этого и не надо делать!

Имитационное математическое моделирование позволяет получить численное решение математических соотношений, описывающих моделируемую систему, не проводя промежуточных преобразований, а путем воспроизведения в структуре имитационной математической модели структуры моделируемой системы, а именно – ее подсистем, элементов и связей между ними. Это сильно упрощает математическое описание системы, но делает его в большинстве случаев более громоздким.

В результате имитационная математическая модель имеет блочную структуру, в которой связи между блоками соответствуют связям реальной системы между элементами ее структуры.

Если учесть,что входные данные ПО – выходные данные модели внешней среды, а входные данные в модель – выходные данные ПО, то получается, что сложность и размер имитационной математической модели внешней среды имеет по крайней мере тот же порядок,что и у отлаживаемого ПО.

В конкретных случаях СТС сложность и размер имитационной математической модели для отладки ПО достигает 60-80% от сложности и размера отлаживаемого ПО. Эта дополнительная значительная трудоемкость часто пугает разработчиков ПО, которые проводят отладку «На коленке» без использования модели внешней среды. От такого подхода качество отладки страдает, так же как в конечном итоге и сроки отладки.

 

В технологии создания высоконадежного и безопасного ПО управления СТС ключевую роль играет математическая имитационная модель внешней по отношению к ПО среды, которую можно представить в виде совокупности моделей объекта управления и математических моделей датчиковой аппаратуры, моделей исполнительных органов, связанных с системной ЦВМ и управляемой от ПО.

Эта модель является средством генерации потока входных данных на отлаживаемое ПО путем моделирования работы системы управления. Она же воспринимает управляющую информацию, порожденную ПО, и обеспечивает реакцию на неё моделей объекта управления точно таким образом, как на неё реагировала бы реальная система.

При этом любые проблемы, выявленные в дружественной среде моделирования, могут быть решены гораздо более эффективно, чем в реальной физической среде функционирования ПО. Поскольку любые переменные в процессе моделирования могут быть зарегистрированы и затем успешно исследованы, то проблема неожиданных взаимодействий частей ПО и следовательно подсистем СТС, проблемы неправильной синхронизации и логических ошибок могут быть обнаружены и разрешены сравнительно легко при выборе соответствующей программы такого моделирования.

Это - сравнительно новая роль математического моделирования. При проектировании и эксплуатации систем управления СТС математическое моделирование широко использовалось и ранее, и используется сейчас. Однако, применяемые при этом модели разнородны для этапов разработки и эксплуатации и их разработка не подвергалась системному анализу.

Возникает вопрос: нужны ли для отладки ПО точные и адекватные модели объекта управления и датчиковой аппаратуры и исполнительных органов, учитывающие в полной мере динамическую сложность этих элементов системы управления? Такие модели необходимы для исследования точности и других характеристик качества системы управления на стадиях проектирования и эксплуатации, но при отладке ПО эти вопросы, как правило, не исследуются.

При этом несмотря на общее правило «не использовать в моделях деталей больше, чем это необходимо для поставленной задачи» [5], следует помнить о системном подходе к моделированию и моделям и для отладки ПО использовать достаточно полные модели объекта управления и аппаратуры системы, так как их разработка все равно необходима для решения ряда задач этапов проектирования и эксплуатации СТС.

Возникает и другой вопрос: в какой мере необходимо использовать ПО встроенных ЦВМ и сами встроенные ЦВМ при моделировании работы системы на различных этапах её жизненного цикла: при проектировании, при разработке, при эксплуатации? Возможно ли ограничиваться лишь использованием «моделей встроенного ПО», примерно реализующий алгоритм без деталей его реализации во встроенных ЦВМ или встроенные ЦВМ с их ПО надо включать в контур моделирования на всех этих этапах?

И, наконец, нужно ли использовать реальную аппаратуру в контуре моделирования или математические модели её обеспечат необходимую достоверность результатов?

Ниже даются ответы на эти вопросы.

Задачи математического моделирования на различных этапах жизненного цикла СТС

 

Можно выделить следующие основные направления использования математического моделирования, отличающиеся требованиями к процессу моделирования и моделям СТС.

1. Моделирование, как метод имитации поведения СТС при выполнении ею целевой задачи, традиционно применяется при проектировании СТС:

для выбора структуры и параметров объектов управления и системы управления,

для проверки проектных решений в штатных и нештатных ситуациях и получения характеристик динамических процессов,

для статистических исследований с учетом вероятных разбросов характеристик параметров модели и возмущающих факторов,

для прогнозирования поведения СТС на будущие времена,

для идентификации параметров системы по экспериментальным данным.

Модели объекта управления и системы управления в этом случае могут быть различной сложности и ориентированы на решение конкретных задач с той точностью и с тем качеством, которая соответствует стадии проектирования СТС.

Что касается использования готового ПО встроенных вычислительных средств СТС, то оно, как правило, на проектной стадии отсутствует, так как разрабатывается параллельно и вполне достаточно использовать предполагаемые алгоритмы (или исследуемые алгоритмы) решения задач СТС, исполняемые на универсальных ЦВМ. Принципиально важно, что проектные модели должны имитируют работу СТС в реальном времени.

2. Математическое моделирование широко применяется как средство генерации отладочных заданий в процессе отладки ПО встроенной в СТС ЦВМ о чем говорилось в предыдущем разделе.

В данном случае реальная системная ЦВМ или сеть системных ЦВМ, загруженные отлаживаемым ПО, включаются в контур моделирования.

При этом требуется особое структурное построение моделей объекта управления и аппаратуры СТС [1], такое, чтобы структура модели соответствовала структуре реальной системы и каждый вход и выход отлаживаемого ПО обязательно имел ответную часть в структурированной модели внешней среды.

При выполнении этих условий динамическая точность модели аппаратуры СТС и объекта управления для решения задачи отладки ПО отступает на второй план.

Использование реальной аппаратуры СТС для отладки ПО нежелательно, так как неоправданно усложняет процесс моделирования. Более подробно об этом будет сказано ниже.

3.Моделирование работы СТС при испытаниях собранной СТС. Как правило, при таких испытаниях невозможно запустить в реальную работу объект управления по соображениям безопасности. Здесь наличие реальной аппаратуры СТС обязательно, так как целью моделирования работы собранной системы является проверка физических связей между всеми элементами аппаратного комплекса и правильность его функционирования в различных вариантах использования СТС. Это – хоть и частичная (объект управления в основном моделируется) экспериментальная отработка собранной системы.

Использование реальной аппаратуры предопределяет необходимость работы в реальном времени, что должно быть обеспечено соответствующим временем работы модели объекта управления.

4. Моделирование широко применяется в процессе эксплуатации систем в двух случаях:

4.1 Для проверки гипотез по причинам нештатных ситуаций. При этом используются доступные реальные данные полученные в процессе нештатной ситуации.

В большинстве случаев анализа нештатных ситуаций требуется имитация их развития в реальном времени или имитируемом реальном времени. При разборе нештатных ситуаций большое значение имеет правильное воспроизведении процессов управления в СТС на моменты времени предшествующих нештатной ситуации и в момент аварии, точная привязка ко времени команд управления в окрестности времени проявления нештатной ситуации.

Эти временные диаграммы работы СУ должны воспроизводиться при анализе. Временная диаграмма работы системы сосредоточена в программном обеспечении ее ЦВМ и реализуется при его работе с учетом всех тонкостей организации вычислительного процесса, возможных прерываний и т.п. Поэтому разбор нештатных ситуаций требует воспроизведения работы конкретной версии ПО ЦВМ, а не только моделирования её алгоритмов.

4.2 Для проверки данных, закладываемых в систему в процессе её эксплуатации в качестве исходных данных для её работы, на предмет ихкорректности. Ошибки в этой операции для сложных систем, где объем закладываемых в ПО системы данных велик и сами данные имеют сложную логическую внутреннюю структуру, весьма вероятны и, как показывает практика, приводят к тяжелым последствиям особенно для критических систем.

«Проиграть данные», закладываемые в систему, на адекватной модели и убедиться, что система реагирует на них ожидаемым образом – вот технология, защищающая ПО и СТС от подобных ошибок [1].

При этом часто необходимо прогнозировать поведение СТС с исследуемыми данными на заданный интервал времени. Только после этой проверки и этого моделирования данные могут быть заложены в реальную систему.

Очевидно, что в этих случаях требования к структурному и параметрическому подобию совокупности математических моделей аппаратуры реальной системе, должны быть высоки. В противном случае при математическом моделировании даже будет затруднительно вводить в модель данные, полученные в реальной нештатной ситуации и приписанные к определенным элементам структуры системы.

Упомянутые задачи, решаемые в реальном времени, требуют воспроизведения детального взаимодействия и синхронизации всех составных частей и подсистем СТС. Эти взаимодействия и синхронизация управляются в СТС программным обеспечением встроенных вычислительных средств.

Поэтому необходимо для решения данных задач эксплуатации СТС при математическом моделировании использовать реальные системные ЦВМ и их реальное ПО с целью отражения в вычислительном процессе встроенных ЦВМ всех аспектов реального межпрограммного взаимодействия. Именно ошибки такого взаимодействия являются часто источником проблем и ошибок в работе СТС.

Для решения задач 4.1 и 4.2. использование реального ПО системной ЦВМ со всеми тонкостями взаимодействия и синхронизации его внутренних процессов и потоков при многозадачной работе представляется обязательным

Альтернативой использованию реальной аппаратуры встроенной системной ЦВМ является использование программного эмулятора системной ЦВМ с загруженным в него реальным ПО системы, что при моделировании вполне соответствует целям задачи 4.1 и 4.2.

Использование реальной БЦВМ будет обязательно накладывать однозначное требование на процесс моделирования - моделировать надо в реальном времени.

С другой стороны быстродействие современных ЦВМ позволяет проводить эмуляцию БЦВМ и само моделирование в «моделируемом реальном» времени, которое может оказаться быстрее реального, так как быстродействие системных управляющих ЦВМ на порядки меньше быстродействия современных универсальных ЦВМ. Это повысит производительность процесса моделирования.

 

Реальная аппаратура в контуре моделирования. Принцип повторяемости результатов при моделировании.

 

Использование реальной аппаратуры системы управления в процессе моделирования является нецелесообразным в основном по ряду следующих причин.

Во первых, практиковавшееся ранее использование реальной аппаратуры системы управления при моделировании основывалось на том, что значительная часть «алгоритма» управления реализовывалась на аналоговых приборах, математическое описание которых,а затем программная реализация представляли определенные трудности. В обход этих трудностей и использовались реальные приборы. В частности, при моделировании систем управления ракет и других летательных аппаратов использовались реальные рулевые машины, усилители – преобразователи, фильтры и т.п. В настоящее время не представляет большого труда реализовать решение на быстродействующих ЦВМ уравнений модели аппаратуры любой сложности в том числе нелинейных уравнений рулевых машин.

Во-вторых, моделирование при проведении проектных работ должно предшествовать стыковке и отладке всей системы управления в целом. Поэтому при разработке новых систем всегда целесообразно проводить моделирование без взаимодействия с реальной аппаратурой, отличающейся также новизной. Кроме того получение такой реальной аппаратуры в сроки проведения проектного моделирования, а также разработки ПО встроенных ЦВМ представляется весьма проблематичным.

В третьих, существенная часть моделирования – проверка работы СТС в нештатных ситуациях. На реальной аппаратуре трудно имитируются нештатные ситуации в аппаратуре. Не ломать же её?! Моделирование же нештатных ситуаций на математической модели осуществляется буквально «росчерком пера».

Отработка нештатных ситуаций, учет разбросов характеристик объекта управления и аналоговой аппаратуры – существенная часть работ при моделировании СТС и поэтому математическое моделирование здесь является более предпочтительным.

В четвертых, работа с реальной аппаратурой сопряжена с необходимостью поддержания ее в работоспособном состоянии в условиях, когда ресурс её штатной работы при проведении моделирования в течении ряда лет превышается многократно. Износ аппаратуры сопровождается «уходом» её параметров, что может снижать точность проведения моделирования в большей степени, чем неточности ее математического описания. На этом фоне также значительные трудности вызывает настройка параметров аппаратуры при обязательном учете её возможных разбросов в процессе моделирования.

В пятых математическое чисто цифровое моделирование без аналоговых устройств в контуре моделирования обладает полной повторяемостью результатов при задании одних и тех же исходных данных. Этого нельзя сказать при наличии в контуре моделирования аналоговых устройств, на состояние которых и следовательно на результат моделирования влияет изменение питающего напряжения, температура.

Повторяемость результатов – очень важное свойство процесса моделирования при поиске ошибок и при анализе нештатных ситуаций, так как базовый метод анализа, поиска и локализации ошибки основан на многократном повторении «подозрительного на ошибку» участка работы СТС с подключением различных диагностических средств. Те ошибки или отказы быстро находятся и локализуются, которые удается легко воспроизводить.

В настоящее время нет причин, требующих использования в контуре моделирования реальной аппаратуры, с одним исключением: для исполнения реального ПО совместно с моделью внешней среды необходима реальная ЦВМ системы. Да и то её вполне можно заменить моделью – эмулятором.

Такой подход сильно упрощает процедуру моделирования и расширяет возможности использования такого программного комплекса моделей на других этапах жизненного цикла ПО и СТС в том числе вне стен организации разработчика СТС и или её системы управления т.е. в местах эксплуатации.

Использование аппаратных физических имитаторов вместо реальной аппаратуры в большинстве случаев нерационально, так как их разработка, изготовление и эксплуатация сложнее, чем цифровой математической модели, также как и ее настройка на имитацию штатных и нештатных ситуаций в аппаратуре СТС.

 

Современные технологии и средства для компьютерного моделирования систем автоматизации и управления

Рассмотрев основную компьютерную технологию создания систем управления для СТС – имитационное математическое моделирование имеет смысл остановится на средствах и инструментах, облегчающих её применение.

Пакет программ MATHCAD, включающий в свой состав три редактора: формульный, текстовый и графический, обеспечивает, принятый в математике способ записи функций и выражений и получения результатов вычислений в виде таблиц и графиков. MATHCAD включает множество операторов, встроенных функций и алгоритмов решения разнообразных математических задач, которые напрямую приложимы к кругу задач управления, и в частности задач моделирования поведения динамических систем. С помощью пакета MATHCAD можно решать следующие задачи, возникающие при проектировании и исследовании систем управления СТС:

выполнять действия с векторами и матрицами,

осуществлять логические операции, решать системы дифференциальных уравнений,

проводить статистическую обработку результатов.

аппроксимировать функции, заданные таблично,

решать задачи оптимизации и т.п.

Пакет SIMULINK позволяет моделировать динамические процессы путем создания структурной схемы, состоящих из различных звеньев и блоков На экране дисплея создается модель исследуемой системы. Меняя параметры системы схему связей между её звеньями можноисследовать динамические процессы, протекающие в системе.

SCADA системы.

 

Автоматизированная система управления системами в общем случае выполняет ряд различных функций:

-сбор и оценка данных управляемого процесса (мониторинг процесса),

-автоматическое управление некоторыми координатами управляемого процесса от встроенных в систему ЦВМ,

-предоставление человеку-оператору средств «ручного управления системой».

Встроенные компьютеры (контроллеры) в АСУ, в автоматических системах управления движущимися объектами и т.п. выполняют функции звена, перерабатывающего информацию с датчиков и вырабатывающего в автоматическом режиме управляющие воздействия на исполнительные органы системы. Во встроенные компьютеры в той или иной форме вводится информация от человека – оператора (системы более высокого уровня иерархии), содержащая исходные данные, настройки или целевые программы управления.

Исключать необходимость участия в работе технических промышленных систем оператора нельзя и, например, при наладке автоматической системы, разборе и устранении нештатных ситуаций в ней. Поэтому и в автоматических системах необходимо обязательно предусматривать участие человека и соответственно средств доступа к ПО системной ЦВМ.

В этих случаях используется двухуровневое техническое решение, когда встроенный промышленный компьютер (нижний уровень) подключается к РС (верхний уровень), по сетевым технологиям, a оператор сидит и работает за монитором и клавиатурой РС верхнего уровня, имея дистанционный доступ в промышленный компьютер и в его ПО. По этой же линии связи в РС поступает информация из промышленного компьютера, необходимая для работы системы.

Это же двухуровневое решение может быть использовано как инструментальное средство при отладке ПО контроллера. В этом случае. недостающие промышленному контроллеру отладчик, клавиатура и монитор находятся в ПК верхнего уровня.

Во многих случаях в состав подобных АСУТП входят достаточно универсальные пакеты программ управления SCADA (Supervisory Control and Data Acquisition) для непосредственного программного управления технологическим оборудованием на базе контроллеров (специализированных компьютеров, называемых промышленными), которые встроены в технологическое оборудование. В состав SCADA входят совершенные средства отображения информации управления для оператора, а также средства, позволяющие оператору вмешиваться в управление системой.

В SCADA наряду с языками высокого уровня входит среда графического программирования, позволяющая создавать ПО контроллеров на интуитивно понятном языке предметной области без программирования в общепринятом смысле этого слова. Процесс создания ПО в этом случае состоит из:

- создания схемы управления объектом автоматизации, конфигурирования оборудования (из библиотеки оборудования),

- добавления программных компонентов из библиотеки компонентов и настройка их свойств,

- создание связей между компонентами ПО и компонентами ПО и оборудованием,

- оформление внешнего вида приложения – пользовательского интерфейса,

- создание структуры и шаблонов отчетов оформления результатов.

На мировом рынке представлено более 50 продуктов, которые можно отнести к SCADA-системам, продукты различаются:

по требуемой операционной системе, наиболее распространена Windows (Linux, Mac OS встречаются намного реже для данного продукта);

по количеству поддерживаемого оборудования,

по цене, по соотношению цена/качество, в общем случае на рынке представлены как полностью бесплатные SCADA, недорогие SCADA с ценой лицензии на 60 тегов от $100 (DATARate), так и SCADA ценой порядка $100 тыс., при максимальной комплектации — при количестве тегов более 5000, нескольких АРМ диспетчера (WinCC, InTouch, Citect);

частный случай условно-бесплатные SCADA, c ограничением по времени работы без перезапуска (обычно 1 час),

 

Вопросы для повторения

Роль математического моделирования, как средства генерации данных на отладку ПО встроенных в систему ЦВМ

Задачи математического моделирования на различных этапах жизненного цикла СТС

Реальная аппаратура в контуре моделирования. Принцип повторяемости результатов при моделировании.

Современные технологии и средства для компьютерного моделирования систем автоматизации и управления

SCADA системы

 

 

 

 

 

 



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 251; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.83.150 (0.044 с.)