Свойства веществ с ионной связью: твердые, тугоплавкие, не имеют запаха, часто хорошо растворимые в воде. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Свойства веществ с ионной связью: твердые, тугоплавкие, не имеют запаха, часто хорошо растворимые в воде.



34.Виды межмолекулярного взаимодействия.

1) ориентационные (полярные молекулы вследствие электростатического взаимодействия разноименных концов диполей ориентируются с пространстве так, что отрицательные концы диполей одних молекул повернуты к положительным концам диполей других молекул)

2) индукционные (наблюдаются также и у веществ с полярными молекулами, но при этом оно обычно значительно слабее ориентационного. Полярная молекула может увеличивать полярность соседней молекулы. Иными словами, под влиянием диполя одной молекулы может увеличиваться диполь другой молекулы, а неполярная молекула может стать полярной)

3) дисперсионные (эти силы взаимодействуют между любыми атомами и молекулами независимо от их строения. Они вызываются мгновенными дипольными моментами, согласованно возникающими в большой группе атомов)

36. Комплексные соединения. Теория Вернера. Роль в живом организме.

Комплексные соединения, координационные соединения, химические соединения, состав которых не укладывается в рамки представлений об образовании химических связей за счет неспаренных электронов. Обычно более сложные К. с. образуются при взаимодействии простых химических соединений.

Теория: Комплексные соединения мало диссоциируют в растворе (в отличие от двойных солей). Комплексные соединения могут содержать комплексный малодиссоциирующий анион ([Fe(CN)6]3−), комплексный катион ([Ag(NH3)2]+) либо вообще не диссоциировать на ионы (соединения типа неэлектролитов, например карбонилы металлов). Комплексные соединения разнообразны и многочисленны.Комплексные соединения имеют важное значение для живых организмов, так гемоглобин крови образует комплекс с кислородом для доставки его к клеткам, хлорофилл находящийся в растениях является комплексом.

 

 

37. Диссоциация комплексных соединений. Константа нестойкости комплексных ионов.

При растворении в воде комплексных соединений, обычно они распадаются на ионы внешней и внутренней сфер подобно cильным электролитам, так как эти ионы связаны ионогенно, в основном, электростатическими силами. Это оценивается как первичная диссоциация комплексных соединений. Вторичная диссоциация комплексного соединения – это распад внутренней сферы на составляющие ее компоненты. Этот процесс протекает по типу слабых электролитов, так как частицы внутренней сферы связаны неионогенно (ковалентной связью).

Константы нестойкости для различных комплексных ионов различны и могут служить мерой устойчивости комплекса. Наиболее устойчивые в растворах комплексные ионы имеют наименьшие константы нестойкости.

38. Химическая связь в комплексных соединениях (примеры).

Во внутренней сфере между комплексообразователем и лигандами формируются полярные ковалентные связи. Частицы внешней сферы удерживаются около комплекса за счет электростатического ионного взаимодействия, т.е. характер связи преимущественно ионный.

Рассмотрим строение комплекса [Ag(NH3)2]+. Электронная конфигурация иона серебра.

Свободные орбитали иона серебра являются акцепторами электронных пар атомов азота молекул аммиака.

5s- и 5p- орбитали иона Ag+ образуют две гибридные sp- орбитали, т.е. находятся с состоянии sp L q - гибридизации.

Комплекс имеет линейное строение.

Таким образом, электронное строение и тип гибридизации АО комплексообразователя определяют к.ч. и геометрическую форму комплекса.

39. Окислительно- восстановительные реакции. Виды окислительно- восстановительных реакций.

Окисли́тельно-восстанови́тельные реа́кции (ОВР) — это встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем.

Виды: 1) Межмолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах разных веществ, например:

Н2S + Cl2 → S + 2HCl

Внутримолекулярные — реакции, в которых окисляющиеся и восстанавливающиеся атомы находятся в молекулах одного и того же вещества, например:

2H2O → 2H2 + O2

2) Диспропорционирование (самоокисление-самовосстановление) — реакции, в которых один и тот же элемент выступает и как окислитель, и как восстановитель, например:

Cl2 + H2O → HClO + HCl

3) Репропорционирование (конпропорционирование) — реакции, в которых из двух различных степеней окисления одного и того же элемента получается одна степень окисления, например:

NH4NO3 → N2O + 2H2O

40. Важнейшие окислители и восстановители. Окислительно- восстановительная двойственность.

Восстановители

Металлы,

водород,

уголь.

Окись углерода (II) (CO).

Сероводород (H2S);

оксид серы (IV) (SO2);

сернистая кислота H2SO3 и ее соли.

Галогеноводородные кислоты и их соли.

Катионы металлов в низших степенях окисления: SnCl2, FeCl2, MnSO4, Cr2(SO4)3.

Азотистая кислота HNO2;

аммиак NH3;

гидразин NH2NH2;

оксид азота(II) (NO).

Катод при электролизе.

Окислители

Галогены.

Перманганат калия(KMnO4);

манганат калия (K2MnO4);

оксид марганца (IV) (MnO2).

Дихромат калия (K2Cr2O7);

хромат калия (K2CrO4).

Азотная кислота (HNO3).

Серная кислота (H2SO4) конц.

Оксид меди(II) (CuO);

оксид свинца(IV) (PbO2);

оксид серебра (Ag2O);

пероксид водорода (H2O2).

Хлорид железа(III) (FeCl3).

Бертоллетова соль (KClO3).

Анод при электролизе.

Окислительно-восстановительная двойственность – это способность атома, находящегося в промежуточной степени окисления, быть как восстановителем, так и окислителем, в зависимости от того, с каким веществом он реагирует.

 

41. Стандартные электродные потенциалы. Направление протекания окислительно восстановительных реакций.

Стандартный электродный потенциал-это потенциал электрода при стандартных условиях, его обозначают символом Е°.

Окислительно-восстановительная реакция будет самопроизвольно протекать в таком направлении, при котором полуреакция с более высоким значением окислительно-восстановительного потенциала выступает в качестве окислителя по отношению к полуреакции с более низким потенциалом.

Стандартные электродные потенциалы

Уравнение электродного процесса Стандартный потенциал Е при 25С, В
Li+ + eLi –3,045
Rb+ + eRb –2,925
K+ + e K –2,924
Cs+ + e Cs –2,923
Ca+2 + 2e Ca –2,866
Na+ + eNa –2,714
Mg2+ + 2eMg –2,363
Al3+ + 3eAl –1,663
Ti2+ + 2eTi –1,630
Mn2+ + 2eMn –1,179
Zn2+ + 2eZn –0,763
Cr3+ + 3eCr –0,744
Fe2+ + 2eFe –0,440
Cd2+ + 2eCd –0,403
Co2+ + 2eCo –0,277
Ni2+ + 2eNi –0,250
Sn2+ + 2eSn –0,136
Pb2+ + 2ePb –0,126
Fe3+ + 3eFe –0,037
2H+ + 2e H2 0,000
Bi3+ + 3eBi 0,215
Cu2+ + 2eCu 0,337
Ag+ + eAg 0,799
Hg2+ + 2eHg 0,850
Pt2+ + 2ePt 1,188
Au+ + eAu 1,692

Направление ОВР можно определять по электродвижущей силе реакции(ΔЕ), которая связана с изменением энергии Гиббса реакции ΔG соотношением:

-ΔG=nFΔE

n–число электронов;F – постоянная Фарадея(9,65 * 104 Кл/моль)

 

1.Общая характеристика подгруппы галогенов.

Галоге́ны — химические элементы 17-й группы периодической таблицы химических элементов Реагируют почти со всеми простыми веществами, кроме некоторых неметаллов. Все галогены — энергичные окислители, поэтому встречаются в природе только в виде соединений. С увеличением порядкового номера химическая активность галогенов уменьшается, химическая активность галогенид-ионов F, Cl, Br, I уменьшается. К галогенам относятся фтор F, хлор Cl, бром Br, иод I, астат At.

2. Способы получения галогенов. Применение.

Хлор. Хлор можно получить в лабораторных условиях окислением концентрированной соляной кислоты манганатом(VII) калия.

Бром. Для получения брома в лабораторных условиях добавляют оксид марган-Ha(IV) к смеси концентрированной серной кислоты с бромидом калия.

Иод. Иод получают тем же способом, что и бром, только вместо бромида калия используется иодид калия. Полученный иод отделяют от реакционной смеси возгонкой.

Для этого в промышленности используют постоянный электрический ток.

Фтор вводят в состав зубной пасты, а хлором дезинфицируют воду в плавательных бассейнах. Бром применяют в качестве успокоительного средства, а спиртовой раствор йода как антисептическое средство.

3. Водородные соединения галогенов. Свойства, применение.

Галогеноводороды, галогеноводородные кислоты и галогениды. Все галогеноводороды при обычных условиях газообразны. Химическая связь, осуществляемая в их молекулах, — ковалентная полярная, причем полярность связи в ряду НF - НСl - НВr - НI падает. Прочность связи также уменьшается в этом ряду. Вследствие своей полярности, все галогеноводороды, в отличие от галогенов, хорошо растворимы в воде.

4. Хлорная вода. Получение, свойства, применение.

Хлорная вода — водный раствор хлора. Содержит молекулы хлора (Cl2), хлорноватистую кислоту (HClO) и хлороводород (HCl).

Получение: в хлораторе, путем насыщения воды газообразным хлором

Применение: Используется для обеззараживания воды в бассейнах способом хлорирования, очень слабый раствор хлора в питьевой воде обеспечивает ее обеззараживания без нанесения большого ущерба здоровью.

Химические свойства: Сильный окислитель, прежде всего благодаря образованию атомарного кислорода в момент выделения.

5.Хлорная известь. Получение, свойства, применение.

Хло́рная и́звесть Ca(Cl)OCl — смесь гипохлорита, хлорида и гидроксида кальция. Относится к так называемым смешанным солям.

Получение:Получают взаимодействием хлора с гашеной известью (гидроксидом кальция):



Поделиться:


Последнее изменение этой страницы: 2017-02-05; просмотров: 140; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.138.170 (0.024 с.)