Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Паскаль: типи дійсних, оператори розгалуження, функції та їх виклики, процедури, під задачі.Содержание книги
Поиск на нашем сайте
Тип дійсних Дійсні числа позначаються дійсними сталими. Розглянемо приклад. Число 1.2345 можна позначити багатьма різними способами, наприклад, 123.45´ 10-2. Тут воно має цілу частину 123, дробову частину .45 і десятковий порядок -2. Цьому запису відповідає стала мови Паскаль 123.45E-2, у якій 123 – ціла частина, .45 – дробова, а E-2 – порядок. Це ж число можна задати сталою 0.12345E1 або 0.012345E+2, або 1.2345, або 12345e-04. Подання числа сталою, у якій перед десятковою крапкою записано єдину цифру від 1 до 9, називається нормалізованим, наприклад, 9.81 або 1.0E2 (число 0 має нормалізоване подання 0.0). Дійсні сталі мають обов'язкову цілучастину, за якою записано дробовучастину і порядок (можливо, одне з них). Ціла частина – це непорожня послідовність цифр, дробова – непорожня послідовність цифр із крапкою на початку, а порядок – буква "E" або "e", можливо, із знаком "+" або "-", і однією або двома цифрами. Перед сталою може бути знак "-", і тоді вона задає від'ємне число: -12.345E-1. Не уточнюючи множину представних дійсних чисел, скажемо лише, що вона:
Як бачимо, цілі числа задаються як цілими сталими, так і дійсними, наприклад, 2 і 2.0. Проте їм відповідають два цілком різних подання того самого числа, тобто значення двох різних типів. І в машині вони обробляються по-різному. До дійсних значень застосовні ті ж самі арифметичні операції, що й до цілих, за винятком odd, div, mod і деяких інших, про що ми скажемо в розділі 10. Їх можна порівнювати (=, <>, > тощо), і до них, і лише до них, застосовні дві операції round і trunc. Вони задаються у вигляді викликів функцій: round(3.62), trunc(2.71) тощо. Перша породжує ціле значення, найближче до операнда, наприклад, round(4.12)=4, round(3.62)=4, а друга – значення математичної функції "ціла частина", що позначається [ x ]: trunc(3.62)=3. Останнє твердження, утім, є не зовсім точним, тому що для від'ємного числа x значенням trunc(x) є не [ x ], а -[-x]: trunc(-3.14)=-3, хоча в математиці [-3.14]=-4. За числовим значенням x, цілим або дійсним, можна обчислити дійсне значення "математичної функції" | x |, , sin x, cos x, arctg x, e x, ln x. Вираз із числовим значенням записується як аргумент у виклику функції з ім'ям відповідно abs, sqrt, sin, cos, arctan, exp, ln або sqr, наприклад, abs(-2), sqrt(1-sin(x)), arctan(sin(1)/cos(1)), exp(ln(x)). Значення аргументу у викликах тригонометричних функцій виражає кількість радіан, а не градусів. Крім того, виклик функції sqr(x) за дійсним значенням x породжує дійсне значення x2, а за цілим – ціле. У системі Турбо Паскаль означено також нульмісну функцію Pi (її значенням є число, близьке до числа p) й одномісні функції Frac і Int, застосовні лише до дійсних. Вони задають обчислення дробової частини й дійсного подання цілої частини свого аргументу. Наприклад, sin(pi/2)=1.0, frac(3.1415)=0.1415, int(3.1415)=3.0. Дійсні значення й операції, застосовні до них, утворюють типдійсних з ім'ям real. Задачі 1. * Указати нормалізоване подання дійсних чисел:а) 99999; б) 0.00001 2. Написати вираз мови Паскаль, що відповідає математичному: а)* ab; в)* arcsin x; б)* ; г)* arcctg x; д) [ x ] для будь-якого дійсного x (додатного чи від'ємного); е)* 2p /3 (без використання Pi або сталої, схожої на 3.1415926). 3. а) Написати вираз, що задає обчислення відстані між двома точками площини за їх координатами; б)* написати оператори, що задають обчислення відстані від точки до кола в площині (точка задана координатами, коло – координатами центру й радіусом; якщо точка в колі, то відстань 0). 3.4. * Які з перерахованих вище операцій над дійсними усюди визначені, а які – ні? Поліморфізм З означення типів цілих і дійсних чисел очевидно, що і до тих, і до інших застосовні ті самі операції: +, -, /, порівняння та інші. Але насправді ті самі знаки позначають різні операції! Наприклад, цілі додаються або порівнюються зовсім інакше, ніж дійсні. У програмуванні властивість операції бути означеною для різних типів називається поліморфізмом, а сама операція – поліморфною. За знаком операції та типами виразів, що позначають операнди в Паскаль-програмі, можна визначити, яку саме операцію слід указати в машинній програмі. І це визначається під час трансляції Паскаль-програми (або при обчисленні виразу в процесі її інтепретації). Слово "поліморфізм" буквально означає "багатоформність", тобто наявність багатьох форм у того самого змісту. У даному випадку та сама за змістом операція, наприклад, додавання, має різні машинні форми для різних типів. Сумісність цілих і дійсних Мова Паскаль допускає різнотипні числові, тобто цілі й дійсні, операнди у виразах, наприклад, 2+1.0. При трансляції таких виразів додаються команди породження дійсного значення за цілим операндом. Отже, при обчисленні виразу насправді спочатку виконується перетворення цілого операнда в дійсний і потім указана операція над дійсними значеннями. Так, при обчисленні 2+1.0 спочатку 2 перетворюється в 2.0 і потім додаються 2.0 і 1.0. Можливість указання операндів різних типів у виразах називається сумісністю цих типів. Типи цілих і дійсних є сумісними. Є ще один вид сумісності – сумісністьзаприсвоюванням, коли значення одного типу можна присвоювати змінним іншого. Дійсний тип сумісний за присвоюванням з цілим, але не навпаки. Наприклад, якщо a:real; b:integer, то можна написати a:=b, але не можна b:=a. Аналогічно до обчислення виразів, ціле значення перед присвоюванням перетвориться в дійсне. З цієї ж причини, до речі, при виконанні readln(z) із змінною z:real можна набрати на клавіатурі не дійсну, а цілу сталу – z одержить дійсне значення. Зворотні перетворення програміст повинен задавати явно за допомогою функцій trunc або round, наприклад, b:=round(a). Задача 3.6. Намалюйте три кола, відзначених іменами типів цілих, дійсних і бульових. Проведіть стрілки між ними – стрілка веде від кола А до кола Б, якщо означено операції з операндами типу А и значеннями типу Б, наприклад, від кола integer до кола boolean. Позначте стрілки знаками відповідних операцій. Назвіть поліморфні й неполіморфні операції. Комп'ютер сам вирішить, Що робити і чого не робити
|
||||
Последнее изменение этой страницы: 2017-02-07; просмотров: 113; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.93.168 (0.006 с.) |