Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Исследование особенностей и построение моделей сложных объектов и явлений↑ Стр 1 из 6Следующая ⇒ Содержание книги
Поиск на нашем сайте
МЕТОДИЧЕСКИЕ УКАЗАНИЯ
К ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ ПО ДИСЦИПЛИНЕ “МОДЕЛИРОВАНИЕ СИСТЕМ”
Донецк, ГВУЗ “ДонНТУ” 2011
Министерство образования и науки Украины Донецкий национальный технический университет Кафедра компьютерных систем мониторинга
МЕТОДИЧЕСКИЕ УКАЗАНИЯ
К ВЫПОЛНЕНИЮ ЛАБОРАТОРНЫХ РАБОТ ПО ДИСЦИПЛИНЕ “ МОДЕЛИРОВАНИЕ СИСТЕМ ”
Часть 2 (для студентов специальности 7.080407 «Компьютерный эколого-экономический мониторинг», «Программирование медиасистем и компьютерный дизайн»)
Рассмотрены на заседании кафедры Компьютерных систем мониторинга
Направление подготовки – 0804 “Компьютерные науки”
Протокол № 6 от «11» февраля 2011 г.
Утверждено на заседании учебно-издательского совета Протокол № __ от «__» ____________ 2011 г.
УДК 502.5:004.358(076.5) Методические указания к выполнению лабораторных работ по дисциплине “Моделирование систем”, часть 2 (для студентов специальности 7.080407 «Компьютерный эколого-экономический мониторинг», «Программирование медиасистем и компьютерный дизайн»).
Составители: д.т.н., проф. Аверин Г.В., к.т.н., доц. Звягинцева А.В. – Донецк: ДонНТУ, 2011. – 74 с.
Составители: д.т.н., проф. Аверин Г.В. к.т.н., доц. Звягинцева А.В.
© Кафедра КСМ, ГВУЗ “ДонНТУ” Лабораторная работа №1
Исследование особенностей и построение моделей сложных объектов и явлений
Цель работы: приобретение навыков в исследовании сложных объектов и явлений и построении моделей. Порядок выполнения работы 1. Изучить согласно варианту особенности объекта (явления), установить его природу, построить описательную модель и указать основные принципы и особенности его моделирования. 2. Дать характеристику условий формирования, функционирования, особенностей поведения, эволюции системы и т.д. Расписать наиболее существенные факторы (с указанием диапазонов их изменения), влияющие на его формирование и дальнейшее развитие (угасание).
а) для группы ПКД – графического образа объекта (явления) с использованием 3ds max, photoshop, Adobe Flash, HTML5, Illustrator, Corel, CorelDraw, AutoCAD и т.п.
Изучить графический образ объекта и явления. Построить простейшую структурную модель объекта на основе линий, окружностей, овалов, точек и т.д. Предложить способы описания данного графического объекта геометрическими уравнениями. Например, линии: ; окружности: , крупной точки и т.д. Предложить способы нанесения формы, цвета, теней и т.д. на простейшие геометрические объекты. Предусмотреть возможность анимации и движения данного объекта (явления) во времени (пространстве). Описать возможный алгоритм перемещения объекта. Результаты работы оформить в виде словесного алгоритма (блок-схемы) и динамической картинки изображения на компьютере.
б) для группы КЭМ – абстрактной модели с использованием Statistica, Matlab и Simulink, MathCAD, Delphi, C++, C Sharp и т.п.
Построение простейшей математической модели объекта, например, модель физического маятника следует основывать на уравнении колебаний; моделирование преломления света в линзе – с учетом уравнений оптики; подпрыгивание мяча – используя уравнения кинематики; биение сердца – на основе экспериментальных данных о изменении сердечного ритма; нашествия саранчи – путем оценки случайного перемещения объекта к источнику пищи; перетаскивания гусеницы – путем определения равнодействующей действующих сил и т.д.
3.1 Построение статистического образа. 3.2 На его основе сделать а) динамическую анимацию, визуализацию движения объекта в пространстве и времени (для группы ПКД); б)
3.1. Построить простейшую математическую (имитационную, статистическую, стохастическую, детерминированную и т.п.) модель объекта (КЭМ). 3.2 Осуществить анализ поведения объекта моделирования. 3. С использованием презентационных средств Power Point или flash подготовить доклад о проделанной работе продолжительностью 5 – 7 минут. Обработанный материал представить в виде отчета, в приложениях которого поместить текст доклада и презентацию. К бумажному отчету приложить магнитный носитель с записью электронного варианта самого отчета (реферата), доклада и презентации к нему.
Варианты заданий
Пользуясь литературой и источниками Интернет, осуществить поиск информации по одной из нижеперечисленных тем согласно варианту задания. Обработанный материал представить в виде отчета о проделанной работе и подготовить соответствующий доклад с использованием презентационных средств. Список тем для поиска информации представлен в таблице 1.1.
Таблица 1.1. – Перечень тем для поиска, обработки и систематизации информации
Требования к заданию.
1.2 Рекомендуемая литература 1. Б. Мандельброд. Фрактальная геометрия природы. Пер. с англ. А.Р. Логунова. М.: Институт компьютерных исследований. 2002. 666 с. 2. Я.И. Перельман. Занимательная физика. Книга 1. М.: Наука, 1979. – 126 с. 3. Я.И. Перельман. Занимательная физика. Книга 2. М.: Наука, 1983. – 153 с. 4. Я.И. Перельман. Знаете ли вы физику? М: Наука, 1992. – 275 с. 5. Я.И. Перельман. Занимательные задачи и опыты. 1959. –529 с. 6. Я.И. Перельман. Занимательная астрономия. М.: Технико-теоретическая литература, 1954. – 212 с. 7. Занимательная биология и химия найти 8. Я.И. Перельман. Занимательная математика. Ленинград.: Время, 1927. – 97 с. 9. Я.И. Перельман. Занимательная алгебра. М.: Наука, 1967. – 200 с. 10. Я.И. Перельман. Живая математика. М.: Наука, 1967. – 160 с. 11. Гультяев А.К. MATLAB 5.2. Имитационное моделирование в среде Windows: Практическое пособие. – 286 с. 12. Тудор Оприш. Занимательная бионика. Бухарест: Альбатрос., 1986. – 163 с. 13. Л.В. Тарасов. Физика в природе. М.: Просвещение, 1988. – 351 с.
Лабораторная работа №2
Порядок выполнения работы Используя результаты выполненной работы №1, выполнить следующие работы. 3. Изучить согласно варианту особенности объекта (явления), установить его природу, построить описательную модель и указать основные принципы и особенности его моделирования. 4. Дать характеристику условий формирования, функционирования, особенностей поведения, эволюции системы и т.д. Расписать наиболее существенные факторы (с указанием диапазонов их изменения), влияющие на его формирование и дальнейшее развитие (угасание).
а) для группы ПКД – графического образа объекта (явления) с использованием 3ds max, photoshop, Adobe Flash, HTML5, Illustrator, Corel, CorelDraw, AutoCAD и т.п.
Изучить графический образ объекта и явления. Построить простейшую структурную модель объекта на основе линий, окружностей, овалов, точек и т.д. Предложить способы описания данного графического объекта геометрическими уравнениями. Например, линии: ; окружности: , крупной точки и т.д. Предложить способы нанесения формы, цвета, теней и т.д. на простейшие геометрические объекты. Предусмотреть возможность анимации и движения данного объекта (явления) во времени (пространстве). Описать возможный алгоритм перемещения объекта. Результаты работы оформить в виде словесного алгоритма (блок-схемы) и динамической картинки изображения на компьютере.
б) для группы КЭМ – абстрактной модели с использованием Statistica, Matlab и Simulink, MathCAD, Delphi, C++, C Sharp и т.п.
Построение простейшей математической модели объекта, например, модель физического маятника следует основывать на уравнении колебаний; моделирование преломления света в линзе – с учетом уравнений оптики; подпрыгивание мяча – используя уравнения кинематики; биение сердца – на основе экспериментальных данных о изменении сердечного ритма; нашествия саранчи – путем оценки случайного перемещения объекта к источнику пищи; перетаскивания гусеницы – путем определения равнодействующей действующих сил и т.д.
3.1 Построение статистического образа. 3.2 На его основе сделать а) динамическую анимацию, визуализацию движения объекта в пространстве и времени (для группы ПКД); б)
3.1. Построить простейшую математическую (имитационную, статистическую, стохастическую, детерминированную и т.п.) модель объекта (КЭМ). 3.2 Осуществить анализ поведения объекта моделирования. 3. С использованием презентационных средств Power Point или flash подготовить доклад о проделанной работе продолжительностью 5 – 7 минут. Обработанный материал представить в виде отчета, в приложениях которого поместить текст доклада и презентацию. К бумажному отчету приложить магнитный носитель с записью электронного варианта самого отчета (реферата), доклада и презентации к нему. Лабораторная работа №3
Определение площади Общие положення
Имитационная модель – это формальное (то есть выполненное на некотором формальном языке) описание логики функционирования исследуемой системы и взаимодействия отдельных ее элементов во времени, учитывающее наиболее существенные причинно-следственные связи, присущие системе, и обеспечивающее проведение статистических экспериментов. В результате имитационных экспериментов исследователь получает набор экспериментальных данных, на основе которых могут быть оценены характеристики системы. Иммитационная модель должна отвечать двум основным требованиям: – отражать логику функционирования исследуемой системы во времени; – обеспечивать возможность проведения статистического эксперимента. В основе статистического эксперимента лежит метод статистических испытаний (метод Монте-Карло). Суть его состоит в том, что результат испытания ставится в зависимость от значения некоторой случайной величины, распределенной по заданному закону. Поэтому результат каждого отдельного испытания также носит случайный характер. Проведя серию испытаний, получают множество частных значений наблюдаемой характеристики (то есть выборку). Полученные статистические данные обрабатываются и представляются в виде соответствующих численных оценок интересующих исследователя величин (характеристик системы). Теоретической основой метода статистических испытаний являются предельные теоремы теории вероятностей (теорема Чебышева, теорема Бернулли, теорема Пуассона). Принципиальное значение предельных теорем состоит в том, что они гарантируют высокое качество статистических оценок при весьма большом числе испытаний. Важно отметить, что метод статистических испытаний применим для исследования как стохастических, так и детерминированных систем. Еще одной важной особенностью данного метода является то, что его реализация практически невозможна без использования ЭВМ. В качестве иллюстрации к изложенному рассмотрим применение метода статистических испытаний для вычисления площади круга заданного радиуса. Данная задача относится к классу детерминированных, поскольку весьма сложно представить себе случайные факторы, под влиянием которых площадь неподвижной геометрической фигуры могла бы изменяться. Пусть круг имеет радиус r = 5, и его центр находится в точке с координатами О(1, 2). Уравнение соответствующей окружности имеет вид:
(x – 1)2 + (y – 2)2 = 25. (1.1)
Для решения задачи методом Монте-Карло опишем вокруг круга квадрат. Его вершины будут иметь координаты (-4, -3), (6, -3), (-4, 7) и (6, 7). Координаты любой точки, лежащей внутри квадрата или на его границе должны удовлетворять неравенствам: -4 < х < 6 и -3 < у < 7. Квадрат будет иметь длину ребра, равную 10. При решении данной задачи естественно исходить из того, что все точки в этом квадрате могут появляться с одинаковой вероятностью, то есть будем считать, что х и у распределены равномерно с плотностями вероятностии:
(1.2)
(1.3)
Проведя некоторое количество испытаний (то есть получив множество случайных точек, принадлежащих квадрату), подсчитаем число точек, попавших внутрь круга или на окружность. Если выборка состоит из n наблюдений и из n точек m точек попали внутрь круга или на окружность, то оценку площади круга можно получить из соотношения:
. (1.4)
В таблице приведены оценки площади круга , полученные для разных значений n, причем для каждого n выполнялось 5 прогонов (точное значение = 78,54 см): Прогоны отличаются друг от друга последовательностями случайных чисел, из которых формировались координаты точек. На основании полученных результатов могут быть сделаны выводы, которые справедливы для любого имитационного эксперимента независимо от физической природы и типа моделируемой системы: – каждый прогон модели можно рассматривать как одно наблюдение в проводимом эксперименте на модели; – с увеличением продолжительности прогона (то есть продолжительности наблюдения) отклонение измеряемой величины от ее точного значения уменьшается, поскольку наблюдаемая система переходит в стационарное состояние; – влияние переходных условий можно уменьшить, если увеличить количество прогонов модели (то есть количество экспериментов); – существует предел, за которым увеличение продолжительности прогона модели уже не дает существенного повышения точности результата, измеряемой дисперсией.
Таблица 2.1. – Результаты оценки площади круга методом статических испытаний
Основная цель рассмотренного примера – привлечь внимание к тому факту, что имитационное моделирование не ограничивается разработкой модели и написанием соответствующей программы, а требует подготовки и проведения статистического эксперимента. В связи с этим результаты имитационного моделирования следует рассматривать как экспериментальные данные, требующие специальной обработки и анализа. Задание Используя метод Монте-Карло определить площадь геометрической фигуры. Найти среднее и дисперсию экспериментальных данных по значениям площади. Сравнить значения полученной площади фигуры с её точным значением, используя для этого математические формулы. Таблица 1.7 – Варианты заданий
1.6 Рекомендуемая литература 1. Гультяев А. Имитационное моделирование в среде Windows. Практическое пособие. – СПб.: Корона-принт, 1999.-288с. 2. Максимей И.В. Имитационное моделирование на ЭВМ. М.: Радио и связь, 1988. 3. Технология системного моделирования/Под ред. С.В. Емельянова, В.В. Калашникова и др. М.: Машиностроение; Берлин: Техник, 1988. 4. Советов Б.Я., Яковлев С.А. Моделирование систем. 2-е издание, перераб. и доп. М.: Высшая школа, 1998.
1.7 Контрольные вопросы
1. Охарактеризовать методику проведения статистического эксперимента. 2. Расписать метод статистических испытаний (метод Монте-Карло). 3. Как зависит точность эксперимента от количества прогонов модели. 4. В каких случаях целесообразно применять имитационное моделирование. 5. Преимущества и недостатки использования имитационного моделирования. Лабораторная работа №3
Вероятностные модели Общие положения В основу многих вероятностных моделей процессов и явлений могут быть положены законы распределения случайных величин. Например, известно, что относительная частота рождений младенцев мужского пола заметно не отличается от значения 0,515, если учтено достаточно большое число рождений. Эта частота не зависит от местности, где проводятся наблюдения, или от этнического состава населения. В свою очередь, если определять относительную частоту распада изотопа радия за 100 лет, то всегда будет получаться величина 0,04184. Для очень многих событий установлены те или иные законы распределений. Например, распределение Пуассона применяют при исследовании рисков отказов оборудования, возникновения пожаров, производственных аварий, природных катастроф типа тайфунов, смерчей; распределения Вейбулла, Парето – при исследовании землетрясений, наводнений, извержений вулканов, крупных техногенных катастроф, катастрофических пожаров; гамма-распределение – при изучении риска смертельного травматизма, числа промышленных аварий и т.д. В физике имеется масса примеров, которые связаны с оценкой состояния физических систем на основе определения вероятности событий, свойственных данным системам. Известно, что значения скоростей молекул подчиняются распределению Максвелла, ошибки наблюдений – нормальному распределению, случайные блуждания частиц – распределению арксинуса, сила притяжения (отталкивания), действующая на частицу газа, который представляет собой совокупность заряженных ионов – распределению Хольцмарка и т.д. В системах телекоммуникаций замирания в канале связи при отсутствии прямой видимости между абонентом и базовой станцией имеют рэлеевский закон распределения; аддитивные помехи (шумы) часто описываются нормальным (гауссовским) законом распределения; временные интервалы между вызовами в телефонных сетях связи обычно имеют экспоненциальный закон распределения. На практике часто приходится выбирать вид модельного распределения не имея достаточного объема данных, чтобы можно было бы проверить его адекватность. Выбор вида распределения обычно основывается на прошлом опыте, на знании механизма конкретного явления или на теоретических предпосылках. Краткие сведения о распределениях вероятностей случайных величин Известно, что основной вероятностной характеристикой случайных величин является плотность распределения вероятности. Для различных вероятностных распределений зависимости для определения плотности вероятности имеют вид:
, – для показательного закона распределения; – для нормального (гауссова) закона распределения; , – для пуассоновского закона распределения;
, , , – для закона распределения хи-квадрат (частный случай при – рэлеевское распределение - ; , , , – для закона распределения Вейбулла; – для логнормального закона распределения; Источники случайных чисел Физические источники настоящих случайных чисел не отличаются многообразием. Шумы, такие как детекторы событий ионизирующей радиации, дробовой шум в резисторе или космическое излучение могут быть источниками случайных чисел. Однако устройства, использующие эти явления, применяются редко. Более простым решением является создание некоторого набора из большого количества случайных чисел и опубликование его в некотором словаре в таблицах. Однако такие наборы обеспечивают ограничительные последовательности случайных чисел по сравнению с тем количеством, которое требуется на практических приложений. Чаще всего используют для генерации случайных чисел различные алгоритмы. Эти алгоритмы заранее определены и, следовательно, генерируют последовательность чисел, которая теоретически не может быть статистически случайной. В то же время, если выбрать хороший алгоритм, полученная численная последовательность будет удовлетворять большинству тестов на случайность. Числа, генерируемые алгоритмами и удовлетворяющие статистическим критериям, называют псевдослучайными числами. В основе моделирования случайных величин лежат методы имитационных случайных чисел с помощью генераторов. Очевидно, что абсолютно случайные числа нельзя получить, используя определённый алгоритм. Однако можно создать такую последовательность чисел, которая будет обладать многими свойствами случайных чисел. Такие числа называются псевдослучайными. Впервые способы создания псевдослучайных чисел предложил Джон фон Нейман в 1946 г. Генератор псевдослучайных чисел (ГПСЧ) представляет собой алгоритм, генерирующий некоторую последовательность чисел, которые почти независимы друг от друга и подчиняются заданному вероятностному распределению (обычно равномерному). Современная информатика широко использует псевдослучайные числа в самых разных приложениях: в методе Монте-Карло, при имитационном моделировании, в криптографии и т.д. При этом от качества применяемых ГПСЧ напрямую зависит качество получаемых результатов. Детерминированные ГПСЧ Детерминированный алгоритм не может генерировать абсолютно случайные числа, он может только генерировать последовательность с некоторыми случайными свойствами. Для создания таких алгоритмов используют различные методы, например, линейный конгруэнтный метод, метод Фибоначчи с запаздываниями, регистр сдвига с линейной обратной связью, регистр сдвига с обобщенной обратной связью. Из современных ГПСЧ широкое распространение также получил алгоритм «вихрь Мерсенна», предложенный в 1997 году Мацумото и Нисимурой и основанных на свойствах простых чисел Мерсенна. Его достоинствами являются колоссальный период (219937 − 1), равномерное распределение в 623 измерениях, быстрая генерация случайных чисел (в 2-3 раза быстрее, чем другие ГПСЧ). Однако, существуют алгоритмы, распознающие последовательность, порождаемую вихрем Мерсенна, как неслучайную. Варианты заданий
|
|
Последнее изменение этой страницы: 2017-02-07; просмотров: 148; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.126.33 (0.011 с.) |