Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Формальные параметры – это переменные, фиктивно (формально) присутствующие в процедуре и определяющие тип и место подстановки фактических параметров.

Поиск

Фактические параметры – это реальные объекты программы, заменяющие в теле процедуры при ее вызове формальные параметр.

Формальные параметры подпрограммы указывают, с какими параметрами следует обращаться к этой подпрограмме (количество параметров, их последовательность, типы). Они задаются в заголовке подпрограммы в виде списка формальных параметров, разбитого на группы, разделенные точками с запятыми. В группу формальных параметров включаются однотипные параметры одной категории.Все формальные параметры можно разбить на четыре категории:

- параметры-значения (эти параметры подпрограмма может изменить в основной подпрограмме);

- параметры-переменные (эти параметры подпрограмма может изменить в основной программе);

- параметры-константы (только в версии 7.0);

- параметры-процедуры и параметры-функции (т.е. процедурного типа).Для каждого формального параметра следует указать имя и, как правило, тип, а в случае параметра-переменной или параметра-константы – категорию. Имена параметров могут быть любыми, в том числе и совпадать с именами объектов программы. Необходимо лишь помнить, что в этом случае параметр основной программы с таким именем становится недоступным для непосредственного использования подпрограммой. Тип формального параметра может быть практически любым, однако в заголовке подпрограммы нельзя вводить новый тип.

Например, нельзя писать

Function SUMM (A: array[1..100] of Real): Real;

Чтобы правильно записать этот заголовок, следует в основной программе ввести тип-массив, а затем использовать его в заголовке:

Type aArr = array[1..100] of real;

Function SUMM (A: aArr): Real;

При обращении к подпрограмме формальные параметры заменяются на соответствующие фактические вызывающей программы или подпрограммы.

4 (3)

5Фу́нкция — в программировании — это поименованная часть программы, которая может вызываться из других частей программы столько раз, сколько необходимо. Функция, в отличие от процедуры, обязательно возвращает значение. С точки зрения теории систем, функция в программировании — отдельная система (подсистема, подпрограмма), на вход которой поступают управляющие воздействия в виде значений аргументов. На выходе функция возвращает результат, который может быть как скалярной величиной, так и векторным значением (структура, индексный массив и т.п.). По ходу выполнения функции могут выполняться, также, некоторые изменения в управляемой системе, причём как обратимые, так и необратимые.. Функция, в отличие от процедуры, обязательно возвращает значение.

Побочным эффектом функции называется любое изменение функцией состояния программной среды, кроме возвращаемого значения: изменение значений глобальных переменных, выделение и освобождение памяти, ввод-вывод и тому подобного. Теоретически наиболее правильным является использование функций, не имеющих побочного эффекта (то есть таких, в результате вызова которых возвращается вычисленное значение, и только). В функциональной парадигме программирования любая программа представляет собой набор вложенных вызовов функций, не вызывающих побочных эффектов. Наиболее известный язык программирования, реализующий эту парадигму — Лисп. В нём любая операция, любая конструкция языка, любое выражение, кроме константы, являются вызовами функций. Наиболее полно парадигма функционального программирования реализуется в языке Хаскелл.

6. Описание функции содержит ее имя, тип возвращаемого значения (если оно есть) и число и типы параметров, которые должны задаваться при вызове функции. Например:

extern double sqrt(double);

extern elem* next_elem();

extern char* strcpy(char* to, const char* from);

extern void exit(int);

Семантика передачи параметров тождественна семантике инициализации: проверяются типы фактических параметров и, если нужно, происходят неявные преобразования типов. Так, если учесть приведенные описания, то в следующем определении:

double sr2 = sqrt(2);

содержится правильный вызов функции sqrt() со значением с плавающей точкой 2.0. Контроль и преобразование типа фактического параметра имеет в С++ огромное значение.В описании функции можно указывать имена параметров. Это облегчает чтение программы, но транслятор эти имена просто игнорирует.

Рекурсия в программировании

Функции

В программировании рекурсия — вызов функции (процедуры) из неё же самой, непосредственно (простая рекурсия) или через другие функции (сложная или косвенная рекурсия), например, функция вызывает функцию, а функция — функцию. Количество вложенных вызовов функции или процедуры называется глубиной рекурсии. Преимущество рекурсивного определения объекта заключается в том, что такое конечное определение теоретически способно описывать бесконечно большое число объектов. С помощью рекурсивной программы же возможно описать бесконечное вычисление, причём без явных повторений частей программы. Реализация рекурсивных вызовов функций в практически применяемых языках и средах программирования, как правило, опирается на механизм стека вызовов — адрес возврата и локальные переменные функции записываются в стек, благодаря чему каждый следующий рекурсивный вызов этой функции пользуется своим набором локальных переменных и за счёт этого работает корректно. Оборотной стороной этого довольно простого по структуре механизма является то, что на каждый рекурсивный вызов требуется некоторое количество оперативной памяти компьютера, и при чрезмерно большой глубине рекурсии может наступить переполнение стека вызовов. Вследствие этого, обычно рекомендуется избегать рекурсивных программ, которые приводят (или в некоторых условиях могут приводить) к слишком большой глубине рекурсии.Имеется специальный тип рекурсии, называемый «хвостовой рекурсией». Интерпретаторы и компиляторы функциональных языков программирования, поддерживающие оптимизацию кода (исходного или исполняемого), автоматически преобразуют хвостовую рекурсию к итерации, благодаря чему обеспечивается выполнение алгоритмов с хвостовой рекурсией в ограниченном объёме памяти. Такие рекурсивные вычисления, даже если они формально бесконечны (например, когда с помощью рекурсии организуется работа командного интерпретатора, принимающего команды пользователя), никогда не приводят к исчерпанию памяти. Однако, далеко не всегда стандарты языков программирования чётко определяют, каким именно условиям должна удовлетворять рекурсивная функция, чтобы транслятор гарантированно преобразовал её в итерацию. Одно из редких исключений — язык Scheme (диалект языка Lisp), описание которого содержит все необходимые сведения. Любую рекурсивную функцию можно заменить циклом и стеком.

Описание файлов

Типизированные файлы.

Описание типа:

type <имя типа> = file of <тип компонентов (ЗАПИСЕЙ);> Этот тип можно назвать базовым типом для файла. Например:

type dbfil = file of double; ar1 = array [1..20] of Integer;

fiar = file of ar1;

Описание файловых переменных:

var <имя переменной> = <имя типа (файлового)>; Например: db1: dbfil; db2: file of double;

Нетипизированные файлы.

Описание типа:

type <имя типа> = file; Например:

type nf = file;

Описание файловых переменных:

var <имя переменной> = <имя типа (файлового)>; Например: fff: nf; fara: file;

Текстовые файлы.

Описание типа:

type <имя типа> = Text; (В Делфи: <имя типа> = TextFile) Например:

type tx1 = Text;

Описание файловых переменных:

var <имя переменной> = <имя типа (файлового)>; Например: tfu: tx1; ftx: text;



Поделиться:


Последнее изменение этой страницы: 2017-02-07; просмотров: 362; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.140.152 (0.006 с.)