ТОП 10:

Десятичная система счисления



 

Пришла в Европу из Индии, где она появилась не позднее VI века н. э. В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, однако информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция). В десятичной системе счисления особую роль играют число 10 и его степени: 10, 100, 1000 и т. д. Самая правая цифра числа показывает число единиц, вторая справа – число десятков, следующая – число сотен и т. д.

 

Двоичная система счисления

 

В этой системе всего две цифры – 0 и 1. Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т. д. Самая правая цифра числа показывает число единиц, следующая цифра – число двоек, следующая – число четверок и т. д. Двоичная система счисления позволяет закодировать любое натуральное число – представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что легко реализуется технически.

 

Восьмеричная система счисления

 

В этой системе счисления 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Цифра 1, указанная в самом младшем разряде, означает, как и в десятичном числе, просто единицу. Та же цифра 1 в следующем разряде означает 8, в следующем – 64 и т. д. Число 100 (восьмеричное) есть не что иное, как 64 (десятичное). Чтобы перевести в двоичную систему, например, число 611 (восьмеричное), надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр). Легко догадаться, что для перевода многозначного двоичного числа в восьмеричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.

 

Шестнадцатеричная система счисления

 

Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: A, B, C, D, E, F. Цифра 1, записанная в самом младшем разряде, означает просто единицу. Та же цифра 1 в следующем – 16 (десятичное), в следующем – 256 (десятичное) и т. д. Цифра F, указанная в самом младшем разряде, означает 15 (десятичное). Перевод из шестнадцатеричной системы в двоичную и обратно производится аналогично тому, как это делается для восьмеричной системы.

 

Таблица 1. Соответствие между первыми несколькими натуральными числами всех трех систем счисления

Кодирование информации

 

В настоящее время во всех вычислительных машинах информация представляется с помощью электрических сигналов. При этом возможны две формы ее представления – в виде непрерывного сигнала (с помощью сходной величины – аналога) и в виде нескольких сигналов (с помощью набора напряжений, каждое из которых соответствует одной из цифр представляемой величины).

Первая форма представления информации называется аналоговой, или непрерывной. Величины, представленные в такой форме, могут принимать принципиально любые значения в определенном диапазоне. Количество значений, которые может принимать такая величина, бесконечно велико. Отсюда названия – непрерывная величина и непрерывная информация. Слово непрерывность отчетливо выделяет основное свойство таких величин – отсутствие разрывов, промежутков между значениями, которые может принимать данная аналоговая величина. При использовании аналоговой формы для создания вычислительной машины потребуется меньшее число устройств (каждая величина представляется одним, а не несколькими сигналами), но эти устройства будут сложнее (они должны различать значительно большее число состояний сигнала). Непрерывная форма представления используется в аналоговых вычислительных машинах (АВМ). Эти машины предназначены в основном для решения задач, описываемых системами дифференциальных уравнений: исследования поведения подвижных объектов, моделирования процессов и систем, решения задач параметрической оптимизации и оптимального управления. Устройства для обработки непрерывных сигналов обладают более высоким быстродействием, они могут интегрировать сигнал, выполнять любое его функциональное преобразование и т. п. Однако из-за сложности технической реализации устройств выполнения логических операций с непрерывными сигналами, длительного хранения таких сигналов, их точного измерения АВМ не могут эффективно решать задачи, связанные с хранением и обработкой больших объемов информации.

Вторая форма представления информации называется дискретной (цифровой). Такие величины, принимающие не все возможные, а лишь вполне определенные значения, называются дискретными (прерывистыми). В отличие от непрерывной величины, количество значений дискретной величины всегда будет конечным. Дискретная форма представления используется в цифровых электронно-вычислительных машинах (ЭВМ), которые легко решают задачи, связанные с хранением, обработкой и передачей больших объемов информации.

Для автоматизации работы ЭВМ с информацией, относящейся к различным типам, очень важно унифицировать их форму представления – для этого обычно используется прием кодирования.

Кодирование – это представление сигнала в определенной форме, удобной или пригодной для последующего использования сигнала. Говоря строже, это правило, описывающее отображение одного набора знаков в другой набор знаков. Тогда отображаемый набор знаков называется исходным алфавитом, а набор знаков, который используется для отображения, – кодовым алфавитом, или алфавитом для кодирования. При этом кодированию подлежат как отдельные символы исходного алфавита, так и их комбинации. Аналогично для построения кода используются как отдельные символы кодового алфавита, так и их комбинации.

Совокупность символов кодового алфавита, применяемых для кодирования одного символа (или одной комбинации символов) исходного алфавита, называется кодовой комбинацией, или, короче, кодом символа. При этом кодовая комбинация может содержать один символ кодового алфавита.

Символ (или комбинация символов) исходного алфавита, которому соответствует кодовая комбинация, называется исходным символом.

Совокупность кодовых комбинаций называется кодом.

Взаимосвязь символов (или комбинаций символов, если кодируются не отдельные символы исходного алфавита) исходного алфавита с их кодовыми комбинациями составляет таблицу соответствия (или таблицу кодов).

В качестве примера можно привести систему записи математических выражений, азбуку Морзе, морскую флажковую азбуку, систему Брайля для слепых и др.

В вычислительной технике также существует своя система кодирования – она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1 (используется двоичная система счисления). Эти знаки называются двоичными цифрами, или битами (binary digital).

Если увеличивать на единицу количество разрядов в системе двоичного кодирования, то увеличивается в два раза количество значений, которое может быть выражено в данной системе. Для расчета количества значений используется следующая формула:

N=2m,

где N – количество независимо кодируемых значений,

а m – разрядность двоичного кодирования, принятая в данной системе.

Например, какое количество значений (N) можно закодировать 10-ю разрядами (m)?

Для этого возводим 2 в 10 степень (m) и получаем N=1024, т. е. в двоичной системе кодирования 10-ю разрядами можно закодировать 1024 независимо кодируемых значения.

 







Последнее изменение этой страницы: 2017-01-25; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.236.245.255 (0.005 с.)