Дайте определение понятия «метаболизм». Укажите основные функции метаболизма. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Дайте определение понятия «метаболизм». Укажите основные функции метаболизма.



Напишите суммарное уравнение реакции окислительного декарбоксилирования пирувата. Укажите ферменты и коферменты, входящие в состав мультиэнзимного комплекса. Назовите эффекторы, влияющие на его активность.

Заключительной реакцией второй стадии катаболизма питательных веществ является окислительное декарбоксилирование пирувата.

Пируват подвергается окислительному декарбоксилированию до ацетил-коэнзима А (ацетил-КоА) в митохондриях клеток при участии пируватдегидрогеназного комплекса. Пируватдегидрогеназный комплекс – мультифермент, в состав которого входит 3 фермента:

1) пируватдекарбоксилаза (коферментом служит производное витамина В1 - тиаминдифосфат, ТДФ, формулу его см. в теме «Коферменты»);

2) трансацилаза (кофермент – липоевая кислота, ЛК, см. рисунок 9.4);

3) дигидролипоилдегидрогеназа (в качестве кофермента используется производное витамина В2 – флавинадениндинуклеотид, ФАД, формулу его см. в теме «Коферменты»).

В реакции участвуют также два кофермента: коэнзим А (НSКоА, производное витамина В3) и никотинамидадениндинуклеотид (НАД, производное витамина РР), связанные при помощи нековалентных связей соответственно с трансацилазой и дигидролипоилдегидрогеназой.

12.3.2. Суммарное уравнение реакции, катализируемой пируватдегидрогеназным комплексом:

Ацетил-КоА затем подвергается окислению в цикле Кребса, а НАДН служит донором водорода для дыхательной цепи. Процесс является аэробным, т.к. конечный акцептор водорода НАДН – кислород. Скорость реакции снижается при накоплении в клетке ацетил-КоА, НАДН и АТФ, увеличивается – при возрастании концентрации АДФ. Регуляторным ферментом комплекса является пируватдекарбоксилаза.

Скорость реакции снижается при накоплении в клетке ацетил-КоА, НАДН и АТФ, увеличивается – при возрастании концентрации АДФ. Регуляторным ферментом комплекса является пируватдекарбоксилаза.

7. Представьте в виде схемы реакции цикла Кребса, обозначьте реакции дегидрирования (ОВР), субстратного фосфорилирования, образования СО2.

Напишите реакции цикла Кребса, в которых образуется СО2. Назовите ферменты и коферменты.

Напишите формулы и названия субстратов НАД-зависимых ферментов в цикле Кребса. Приведите названия ферментов. Укажите дальнейшую судьбу НАДН2.

В цикле Кребса происходит дегидрирование (окисление) субстратов (изоцитрат, α-кетоглутарат, малат). В результате этих реакций образуются НАДН. Эта восстановленная форма кофермента окисляется в митохондриальной дыхательной цепи сопряжённо с синтезом АТФ из АДФ и Н3РО4.

Укажите последовательность и приведите названия компонентов митохондриальной дыхательной цепи. Дайте определение понятия «окислительное фосфорилирование». Укажите локализацию процесса окислительного фосфорилирования в клетке.

Ферментные комплексы дыхательной цепи (обозначены участки сопряжения окисления и фосфорилирования):

I. НАДН-KoQ-редуктаза (содержит промежуточные акцепторы водорода: флавинмононуклеотид и железосерные белки).

II. Сукцинат-KoQ-редуктаза (содержит промежуточные акцепторы водорода: ФАД и железосерные белки).

III. KoQН2-цитохром с-редуктаза (содержит акцепторы электронов: цитохромы b и с1, железосерные белки).

IV. Цитохром с-оксидаза (содержит акцепторы электронов: цитохромы а и а3, ионы меди Cu2+).

В качестве промежуточных переносчиков электронов выступают убихинон (коэнзим Q) и цитохром с.

Окислительное фосфорилирование - окисление НАДН и ФАДН2, протекающее сопряжённо с синтезом АТФ из АДФ и Н3РО4. Локализация ферментов дыхательной цепи – внутренняя митохондриальная мембрана.

13. Дайте определение понятия «протонный трансмембранный потенциал». Опишите процесс его образования (локализация, источник энергии, белки, участвующие в его создании). Укажите пути использования протонного трансмембранного потенциала в митохондриях.

Протонный трансмембранный потенциал (ΔµН+) – это состояние, при котором наружная поверхность внутренней мембраны приобретает положительный заряд, а внутренняя – отрицательный, т.е. создаётся градиент концентрации протонов с более кислым значением рН снаружи.

Ферментные комплексы дыхательной цепи (обозначены участки сопряжения окисления и фосфорилирования):

I. НАДН-KoQ-редуктаза (содержит промежуточные акцепторы водорода: флавинмононуклеотид и железосерные белки).

II. Сукцинат-KoQ-редуктаза (содержит промежуточные акцепторы водорода: ФАД и железосерные белки).

III. KoQН2-цитохром с-редуктаза (содержит акцепторы электронов: цитохромы b и с1, железосерные белки).

IV. Цитохром с-оксидаза (содержит акцепторы электронов: цитохромы а и а3, ионы меди Cu2+).

Компоненты дыхательной цепи, расположенные во внутренней митохондриальной мембране, в ходе переноса электронов могут «захватывать» протоны из матрикса митохондрий и передавать их в межмембранное пространство, образую трансмембранный потенциал.

Энергия протонного трансмембранного потенциала используется для:
1.Энергия переноса электронов используется на синтез АТФ.

2.Энергия переноса электронов используется для выработки тепла.

14. Охарактеризуйте роль Н+-зависимой АТФ-азы. Укажите локализацию и источник энергии для работы Н+-зависимой АТФ-азы.Укажите биологическую роль АТФ в клетке.

Компоненты дыхательной цепи, расположенные во внутренней митохондриальной мембране, в ходе переноса электронов могут «захватывать» протоны из матрикса митохондрий и передавать их в межмембранное пространство. Протоны, выведенные в межмембранное пространство за счёт энергии переноса электронов, снова переходят в митохондриальный матрикс. Этот процесс осуществляется ферментом Н+-зависимой АТФ-азой. Фермент состоит из двух частей (см. рисунок 9.4): водорастворимой каталитической части (F1) и погружённого в мембрану протонного канала (F0). Переход ионов Н+ из области с более высокой в область с более низкой их концентрацией сопровождается выделением свободной энергии, за счёт которой синтезируется АТФ.

Энергия, аккумулированная в форме АТФ, используется в организме для обеспечения разнообразных биохимических и физиологических процессов. Запомните основные примеры использования энергии АТФ:

1) синтез сложных химических веществ из более простых (реакции анаболизма);

2) сокращение мышц (механическая работа);

3) образование трансмембранных биопотенциалов;

4) активный транспорт веществ через биологические мембраны.

Дайте определение понятия «микросомальное окисление». Представьте в виде схемы цепь переноса электронов от НАДФН к кислороду при микросомальном окислении. Укажите локализацию процесса, субстратную специфичность и биологическую роль.

Микросомальное окисление является одним из этапов биотрансформации – обезвреживания неполярных (нерастворимых в воде) соединений как эндогенного происхождения, так и чужеродных для организма веществ (ксенобиотиков).

Она представляет собой короткую цепь переноса водорода и включает несколько последовательно расположенных в мембране ЭПС белков-ферментов.

Источником электронов и протонов в этой цепи является восстановленный кофермент НАДФН, который образуется в реакциях пентозофосфатного пути окисления глюкозы. Промежуточным акцептором Н+ и е служит флавопротеин (ФлПр), содержащий кофермент ФАД. Конечное звено в цепи микросомального окисления - цитохром Р450. Это - сложный белок, хромопротеин, в качестве простетической группы содержит гем. Цитохром Р450 является монооксигеназой, то есть ферментом, включающим один из атомов молекулярного кислорода в окисляемое вещество. Поэтому цепь реакций микросомального окисления называют также монооксигеназной цепью.

В результате окисления субстратов повышается их растворимость в воде, скорость выведения из организма. Биотрансформация лекарственных веществ, как правило, снижает их токсичность.

16. Дайте определение понятия «углеводы». Приведите примеры. Охарактеризуйте биологическую роль углеводов в организме человека.

Углеводы - полигидроксикарбонильные соединения и их производные, Их характерным признаком является наличие альдегидной (-СН=О) или кетонной (>C=O) групп и не менее 2 гидроксильных (-ОН) групп.

Функции углеводов. Углеводы выполняют в организме следующие функции:

1. Энергетическая. Углеводы служат источником энергии. За счет их окисления удовлетворяется примерно половина всей потребности человека в энергии. При окислении 1 г углеводов выделяется около 16,9 кДж энергии.

2. Резервная. Крахмал и гликоген представляют собой форму хранения питательных веществ, выполняя функцию временного депо глюкозы.

3. Структурная. Целлюлоза и другие полисахариды растений образуют прочный остов; в комплексе с белками и липидами они входят в состав биомембран всех клеток.

4. Защитная. Кислые гетерополисахариды (гиалуроновая и хондроитинсерная кислоты) выполняют роль биологического смазочного материала, выстилая трущиеся поверхности суставов, слизистой пищеварительных путей, носа, бронхов, трахеи и др.

5. Антикоагулянтная. Гепарин обладает важными биологическими свойствами, в частности препятствует свёртыванию крови.

6. Углеводы являются источником углерода, который необходим для синтеза белков, нуклеиновых кислот, липидов и других соединений.

17. Дайте определение понятия «гомополисахариды». Приведите примеры. Представьте в виде схемы стадии катаболизма крахмала. Укажите биологическую роль пищевого крахмала и гликогена для человека.

Гомополисахарид – это полисахарид, который состоит из одинаковых моносахаридных остатков (крахмал, гликоген, целлюлоза, декстран).

Гидролиз крахмала начинается в ротовой полости. В слюне содержится фермент амилаза, частично расщепляющая крахмал. Основное место переваривания крахмала - тонкий кишечник. Туда поступает амилаза сока поджелудочной железы. Продуктом действия амилазы является мальтоза. Мальтоза далее расщепляется с помощью мальтазы до глюкозы. Глюкоза поглощается из крови клетками всех тканей и органов.

Крахмал и гликоген представляют собой форму хранения питательных веществ, выполняя функцию временного депо глюкозы. Углеводы служат источником энергии

18. Дайте определение понятия «гетерополисахариды». Приведите примеры веществ этой группы углеводов. Укажите их функции в организме.

Гетерополисахарид - это полисахарид, который состоит из разных моносахаридных остатков (гиалуроновая кислота, хондроитинсерная кислота, гепарин).

Углеводы служат источником энергии

Гиалуроновая кислота связывает воду в межклеточных пространствах, повышая тем самым сопротивление тканей сжатию. Одна молекула гиалуроновой кислоты связывает и удерживает около себя до 500 молекул воды. Она участвует в транспорте и распределении воды в тканях. Гиалуроновая кислота определяет барьерную и защитную функции межклеточного пространства. Внутри суставов она действует как смазка суставных поверхностей, внутри глаза способствует нормализации внутриглазного давления.

Хондроитинсерные кислоты - участвуют в водно-солевом обмене, в регулировании клеточного деления, обладают антикоагулирующим действием.

Гепарин обладает важными биологическими свойствами, в частности препятствует свёртыванию крови.

19. Дайте определение понятия «дисахариды». Приведите примеры, укажите названия мономеров, которые входят в их состав. Назовите ферменты, участвующие в I стадии катаболизма дисахаридов.

Дисахариды - углеводы, содержащие 2 моносахаридных остатка, соединенных, при помощи гликозидных связей - лактоза, сахароза, мальтоза.

Мальтоза расщепляется с помощью мальтазы до глюкозы, дисахарид лактоза (содержащаяся в молоке) расщепляется с помощью лактазы до глюкозы и галактозы. Дисахарид сахароза (содержащаяся в пищевом сахаре) расщепляется с помощью сахаразы до глюкозы и фруктозы.

Представьте в виде схемы окислительный этап пентозофосфатного пути окисления глюкозы. Укажите локализацию, биологическое значение. Назовите ткани, в которых пентозофосфатный путь окисления глюкозы проходит наиболее интенсивно.

В тетради

Значение окислительного этапа:

1.Главный поставщик рибозо-5-фосфата для биосинтетических процессов:

· биосинтез мононуклеотидов (АМФ, ГМФ, УМФ, ЦМФ, ТМФ и др.);

· синтез нуклеиновых кислот (ДНК, РНК);

2.синтез коферментов (НАД+, НАДФ+, ФАД, КоА-SН).

3.Основной источник НАДФН.Н+ в клетках. ПФП на 50 % обеспечивает потребности клетки в НАДФН.Н+.

Пентозофосфатный путь представляет собой прямое окисление глюкозы и протекает в цитоплазме клеток. Наибольшая активность ферментов пентозофосфатного пути обнаружена в клетках печени, жировой ткани, коры надпочечников, молочной железы в период лактации, зрелых эритроцитах.

Напишите реакцию превращения лактона 6-фосфоглюконовой кислоты в 6-фосфоглюконовую кислоту. Назовите вещества, для синтеза, которых используется рибозо-5-фосфат, образующийся в пентозофосфатном пути окисления глюкозы.

Рибозо-5-фосфат превращается в рибулозо-5-фосфат и ксилулозо-5-фосфат, и далее за счёт переноса углеродных фрагментов в метаболиты гликолиза - фруктозо-6-фосфат и глицеральдегид-3-фосфат.

40. Напишите формулу гликогена с точкой ветвления. Охарактеризуйте содержание гликогена в различных тканях.

Гликоген – биополимер, состоящий из остатков глюкозы, он является компонентом всех тканей животных и человека (см. рисунок 14.1). Этот полисахарид служит основным источником энергии и резервом углеводов в организме.

Содержание гликогена в различных органах зависит от физиологического состояния организма. Наиболее высокое содержание гликогена обнаруживается в печени (от 2 до 6% от массы органа). Хотя концентрация гликогена в мышцах значительно ниже (от 0,5 до 1,5%), однако в норме его количество в мышцах составляет 2/3 от общего его содержания в организме.

Гликоген отличается значительным разнообразием по структуре и по относительной молекулярной массе. Молекулы его ветвисты. Глюкозные остатки образуют цепи, в которых они связаны между собой α-1,4-гликозидными связями. Разветвления образуются при помощи α-1,6-гликозидных связей.

Большая часть глюкозы, поступающей в организм с пищей, превращается в клетках печени в гликоген. Это связано с тем, что накопление легко растворимой глюкозы в клетках привело бы к резкому увеличению осмотического давления и разрушению клеточной мембраны.

Дайте определение понятия «метаболизм». Укажите основные функции метаболизма.

Метаболизм (обмен веществ)– совокупность химических реакций, протекающих в живой клетке. Эти реакции протекают в определённой последовательности и тесно связаны между собой. Главные функции метаболизма в клетке:

а) запасание энергии, которая добывается путем расщепления пищевых веществ, поступающих в организм, или путем преобразования энергии солнечного света;

б) превращение молекул пищевых веществ в строительные блоки;

в) сборку белков, нуклеиновых кислот, липидов, полисахаридов и прочих клеточных компонентов из этих строительных блоков;

г) синтез и разрушение тех биомолекул, которые необходимы для выполнения специфических функций данной клетки.

2. Охарактеризуйте реакции первой стадии катаболизма питательных веществ в организме: укажите их локализацию, исходные вещества и образующиеся продукты, относительную энергоотдачу.

На первой стадии крупные биомолекулы расщепляются на составляющие их строительные блоки: полисахариды превращаются в пентозы и гексозы, жиры – в жирные кислоты, глицерол и другие компоненты, белки – в аминокислоты. Это происходит в желудочно-кишечном тракте, а также в лизосомах клетки. Реакции катализируют ферменты, относящиеся к классу гидролаз. Относительная энергоотдача составляет менее 1% всей высвобождаемой энергии.

3. Охарактеризуйте реакции второй стадии катаболизма питательных веществ в организме: укажите их локализацию, исходные вещества и образующиеся продукты, относительную энергоотдачу.

На второй стадии строительные блоки превращаются в более простые молекулы. Моносахариды, глицерол и большинство аминокислот расщепляются до одного и того же трёхуглеродного метаболита – пирувата. Это происходит в цитоплазме клеток. В дальнейшем пируват, а также жирные кислоты и некоторые аминокислоты окисляются до ацетильного остатка, связанного с коэнзимом А (ацетил-КоА). Эти реакции протекают уже в митохондриях клетки. Пируват и ацетил-КоА, находящиеся на пересечении нескольких метаболических путей, можно отнести к ключевым или узловым метаболитам. Относительная энергоотдача второй стадии катаболизма около 20%; выделяемая энергия может быть частично аккумулирована в виде АТФ.

4. Охарактеризуйте реакции третьей стадии катаболизма питательных веществ в организме: укажите их локализацию, исходные вещества и образующиеся продукты, относительную энергоотдачу.

На третьей стадии происходит окисление ацетильной группы в цикле трикарбоновых кислот Кребса до СО2 и восстановленных форм коферментов НАД и ФАД. Эти коферменты окисляются в дыхательной цепи до Н2О; выделяемая энергия аккумулируется в АТФ. Все эти реакции протекают в митохондриях. Относительная энергоотдача третьей стадии - около 80%.

5. Дайте определения понятий «анаболизм» и «катаболизм». Поясните, какая взаимосвязь существует между этими процессами. Приведите примеры катаболических и анаболических процессов.

Катаболизм – это фаза, в которой происходит последовательное расщепление сложных молекул до более простых, таких, как СО2, вода и аммиак. Процессы катаболизма сопровождаются выделением энергии. Эта энергия частично аккумулируется в форме макроэргического соединения – аденозинтрифосфата (АТФ).

Анаболизм – это фаза метаболизма, в которой происходит образование (биосинтез) сложных молекул (белков, липидов, полисахаридов) из простых предшественников. Процессы биосинтеза протекают с затратой энергии. Источником этой энергии служит распад АТФ до АДФ и неорганического фосфата.

Метаболические пути, выполняющие как катаболическую, так и анаболическую функцию, называют амфиболическими.

Катаболическая и анаболическая фазы метаболизма тесно связаны между собой (рисунок 12.2):

а) Энергия, выделяемая в реакциях катаболизма, и аккумулированная в форме молекул АТФ, потребляется в анаболических процессах.

б) В реакциях катаболизма образуются простые метаболиты, которые могут использоваться в реакциях биосинтеза (анаболизма).

Напишите суммарное уравнение реакции окислительного декарбоксилирования пирувата. Укажите ферменты и коферменты, входящие в состав мультиэнзимного комплекса. Назовите эффекторы, влияющие на его активность.

Заключительной реакцией второй стадии катаболизма питательных веществ является окислительное декарбоксилирование пирувата.

Пируват подвергается окислительному декарбоксилированию до ацетил-коэнзима А (ацетил-КоА) в митохондриях клеток при участии пируватдегидрогеназного комплекса. Пируватдегидрогеназный комплекс – мультифермент, в состав которого входит 3 фермента:

1) пируватдекарбоксилаза (коферментом служит производное витамина В1 - тиаминдифосфат, ТДФ, формулу его см. в теме «Коферменты»);

2) трансацилаза (кофермент – липоевая кислота, ЛК, см. рисунок 9.4);

3) дигидролипоилдегидрогеназа (в качестве кофермента используется производное витамина В2 – флавинадениндинуклеотид, ФАД, формулу его см. в теме «Коферменты»).

В реакции участвуют также два кофермента: коэнзим А (НSКоА, производное витамина В3) и никотинамидадениндинуклеотид (НАД, производное витамина РР), связанные при помощи нековалентных связей соответственно с трансацилазой и дигидролипоилдегидрогеназой.

12.3.2. Суммарное уравнение реакции, катализируемой пируватдегидрогеназным комплексом:

Ацетил-КоА затем подвергается окислению в цикле Кребса, а НАДН служит донором водорода для дыхательной цепи. Процесс является аэробным, т.к. конечный акцептор водорода НАДН – кислород. Скорость реакции снижается при накоплении в клетке ацетил-КоА, НАДН и АТФ, увеличивается – при возрастании концентрации АДФ. Регуляторным ферментом комплекса является пируватдекарбоксилаза.

Скорость реакции снижается при накоплении в клетке ацетил-КоА, НАДН и АТФ, увеличивается – при возрастании концентрации АДФ. Регуляторным ферментом комплекса является пируватдекарбоксилаза.

7. Представьте в виде схемы реакции цикла Кребса, обозначьте реакции дегидрирования (ОВР), субстратного фосфорилирования, образования СО2.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 796; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.196.27 (0.044 с.)