Экологический аспект. Мировое и Российское законодательство. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Экологический аспект. Мировое и Российское законодательство.



При производстве топлива важным требованием к нему является экологическая безопасность при его применении.

По данным Государственного комитета Российской Федерации по охране окружающей среды (Госкомэкологии), в России ежегодно образуется около 10 млрд. т отходов производства и потребления, при этом в атмосферный воздух стационарными источниками и автотранспортом выбрасывается в год около 100 млн. т вредных веществ, а со сточными водами в водоемы поступает почти 40 млн. т загрязнителей. Доля автотранспорта по всем видам загрязнения составляет 30%. В загрязнение воздуха крупных городов вклад автотранспорта еще значительнее – от 50 до 90%.

Из комплекса экологических проблем, связанных с ростом всеобщей автомобилизации, можно выделить две главные:

ü проблему автомобильных энергоресурсов (топлива), включая добычу сырья и переработку его в топливо;

ü проблему загрязнения биосферы вредными веществами, содержащимися в выхлопных газах автомобилей.

Основные загрязняющие вещества, выбрасываемые в атмосферу НПЗ, – углеводороды, диоксид серы, оксид углерода, оксиды азота. Вклад прочих вредных веществ в валовой выброс невелик, но они более токсичны.

По экспертным оценкам Москомприроды, разработанные и действующие в Москве экономические и административные механизмы природопользования в рамках «Комплексной экологической программы Москвы» и «Основных направлений сохранения и развития природного комплекса Москвы», принятых правительством Москвы, позволили значительно снизить выбросы загрязняющих веществ промышленных предприятий и автотранспорта в природную среду.

В Мировом законодательстве, в частности в нормативно-правовых актах США, делается акцент на разработку и применение нового вида экологически чистых автомобильных топлив. Выдвинутые Агентством по охране окружающей среды США требования по разработке экологически чистых автомобильных топлив нового состава с уменьшенным содержанием ароматических углеводородов и серы, а также со сниженной эмиссией вредных веществ представляет собой серьезную проблему для нефтепереработчиков США, решение которой потребуют дополнительных капиталовложений. В настоящее время решение по улучшению экологической ситуации заключается в производстве неэтилированного бензина с кислородсодержащими присадками.

Свинец.

В настоящее время свинец занимает первое место среди причин промышленных отравлений. Это вызвано широким применением его в различных отраслях промышленности. Воздействию свинца подвергаются рабочие, добывающие свинцовую руду, на свинцово-плавильных заводах, в производстве аккумуляторов, при пайке, в типографиях, при изготовлении хрустального стекла или керамических изделий, этилированного бензина, свинцовых красок и др. Загрязнение свинцом атмосферного воздуха, почвы и воды в окрестности таких производств, а также вблизи крупных автомобильных дорог создает угрозу поражения свинцом населения, проживающего в этих районах, и прежде всего детей, которые более чувствительны к воздействию тяжелых металлов.

Отравление свинцом (сатурнизм) – представляет собой пример наиболее частого заболевания, обусловленного воздействием окружающей среды. В большинстве случаев речь идет о поглощении малых доз и накопление их в организме, пока его концентрация не достигнет критического уровня необходимого для токсического проявления. Острые свинцовые отравления встречаются редко. Их симптомы – слюнотечение, рвота, кишечные колики, острая форма отказа почек, поражение мозга. В тяжёлых случаях – смерть через несколько дней.

Ранние симптомы отравления свинцом проявляются в виде повышенной возбудимости, депрессии и раздражительности. При отравлении органическими соединениями свинца его повышенное содержание обнаруживают в крови.

Существует острая и хроническая форма болезни. Острая форма возникает при попадании значительных его доз через желудочно-кишечный тракт или при вдыхании паров свинца, или при распылении свинцовых красок. Хроническое отравление наиболее часто возникает у детей, лижущих поверхность предметов, окрашенных свинцовой краской. Дети в отличие от взрослых гораздо легче абсорбируют свинец. Хроническое отравление может развиваться при использовании плохо обожженной керамической посуды, покрытой эмалью, содержащей свинец, при употреблении зараженной воды, особенно в старых домах, где канализационные трубы содержат свинец, при злоупотреблении алкоголем, изготовленным в перегонном аппарате, содержащим свинец. Проблема хронической интоксикации связана также с наличием паров свинца при применении тетраэтилсвинца при ожогах в качестве антишокового препарата.

Выбросы газа отравляют не только атмосферу, но почву, и воду, и продукты питания. Только в Северной Америке такие выбросы в атмосферу составляют 200 тыс. тон свинца ежегодно. Отравление атмосферы повсеместно и в среднем взрослый человек получает примерно от 150 до 400 мг свинца и его концентрация в крови и в тканях составляет до 25 мг/100 мл. Для возникновения клинических признаков болезни необходимо около 80 мгр/100 мл.

Попадая оральным путем, свинец абсорбируется в кишечнике и достигает печени, откуда с желчью вновь попадает в 12-ти перстную кишку. Одна часть свинца реабсорбируется, другая удаляется с испражнениями. Если свинец попадает через дыхательные пути, он быстро достигает кровотока и тогда его действие максимально. Из крови свинец экскретируется почками, часть его депонируется в костях. Свинец ингибирует действие многих энзимов, а также инкорпорацию железа в организме, в результате чего в моче резко увеличивается количество свободного протопорфирина. Его увеличение в моче является четким клиническим признаком сатурнизм.

Органами — мишенями при отравлении свинцом являются кроветворная и нервная системы, почки. Менее значительный ущерб сатурнизм наносит желудочно-кишечному тракту. Один из основных признаков болезни — анемия, возникающая в результате усиленного гемолиза. Эта анемия характеризуется “точечным крапом” эритроцитов в виде базофильных гранул, хорошо выявляемых при окраске метиленовым синим. На уровне нервной системы отмечается поражение головного мозга и периферических нервов. Сатурнизм-обусловленная энцефалопатия чаще наблюдается у детей, реже - у взрослых. В головном мозге выражен диффузный отек серого и белого вещества в сочетании с дистрофическими изменениями кортикальных и ганглионарных нейронов, демиэлинизация белого вещества. В капиллярах и артериолах отмечается пролиферация эндотелиоцитов. Мозговые поражения клинически сопровождаются конвульсиями и бредом, иногда приводят к сонливости и коме. Из периферических нервов чаще всего поражаются наиболее “активные” двигательные нервы мышц. Морфологически наблюдается их демиэлинизация с последующим повреждением осевых цилиндров. Тяжелее всего страдают мышцы – разгибатели кисти, которая приобретает вид “рогов оленя”. Паралич m. peroneus приводит к положению “согнутой ноги”. При хроническом сатурнизме характерно появление кислотоустойчивых внутриядерных включений в эпителиальных клетках проксимальных канальцах нефрона. Эти включения содержат магний, кальций, свинец и протеины. Каково бы ни было их происхождение, выявление этих включений является важным морфологическим признаком сатурнизма. У некоторых больных может наблюдаться развитие хронического тубуло-интерстициального нефрита и хронической почечной недостаточности. Интоксикация свинцом может быть, по большей части предупреждена, особенно у детей. Законы запрещают использовать краски на основе свинца, равно как и его присутствие в них. Соблюдение этих законов может хоть частично решить проблему этих “тихих эпидемий”.

Свинец является металлом, оказывающим хорошо известное нейротоксическое воздействие. Нарушение процесса развития нервной системы детей является наиболее важным воздействием свинца. Эти нарушения могут объясняться его воздействием на эмбрионы, а также в период грудного вскармливания и в раннем детском возрасте.

Свинец накапливается в скелете, и его поступление из костей в период беременности и грудного кормления вызывает воздействие на эмбрионы и детей, вскармливаемых грудью. В этой связи важное значение имеет воздействие свинца на организм женщин до беременности.

В последние десятилетия во многих районах отмечено значительное сокращение уровней Pb-B, главным образом, в результате постепенного прекращения использования этилированного бензина, а также в связи с уменьшением воздействия других источников. Существующий в настоящее время самый низкий средний уровень Pb-B в ряде европейских стран составляет около 20 мкг/л; однако в отношении многих районов

Европы отсутствует надежная информация об уровнях Pb-B. Относительный вклад источников зависит от местных условий. Пища является доминирующим источником поступления свинца в организм человека во всех группах населения. Важным источником поступления свинца в организм младенцев и детей младшего возраста может быть также попадание в организм через их руки пищи, содержащей частицы загрязненной почвы, пыли и свинцовой (старой) краски. При использовании водопроводных систем со свинцовыми трубами поступление свинца в организм через питьевую воду может быть также важным источником, в особенности для детей. Воздействие свинца в результате вдыхания может быть также значительным в тех случаях, когда концентрации свинца в окружающем воздухе являются высокими.

В последние десятилетия концентрации свинца в окружающем воздухе сократились: в период 1990–2003 годов уровни содержания свинца в воздухе сократились на 50–70% в Европе. Аналогичным образом сократились уровни атмосферного осаждения.

Ежегодные объемы поступления свинца в верхние слои почвы в результате ТЗВБР и в связи с использованием минеральных и органических удобрений имеют практически одинаковый порядок величины и изменяются между странами, а также в зависимости от объема сельскохозяйственной деятельности. Это поступление является относительно небольшим в сравнении с уже накопленными запасами свинца, поступающими из природных источников и в результате ресуспендирования. Однако ТЗВБР может в значительной степени повышать содержание свинца в сельскохозяйственных культурах в результате непосредственного осаждения. Хотя объемы его поглощения через корни растений являются относительно небольшими, в долгосрочной перспективе особую озабоченность вызывает рост концентраций свинца в почве, которому следует препятствовать ввиду возможной опасности воздействия низких концентраций свинца на здоровье человека. Поэтому объемы атмосферных выбросов свинца следует поддерживать на максимально возможном низком уровне.

Содержание свинца в магматических породах позволяет отнести его к категории редких металлов. Он концентрируется в сульфидных породах, которые встречаются во многих местах в мире. Свинец легко выделить путем выплавки из руды. В природном состоянии он обнаруживается в основном в виде галенита (РbS).

Свинец, содержащийся в земной коре, может вымываться под воздействием атмосферных процессов, переходя постепенно в океаны. Ионы Рb 2+ довольно нестабильны, и содержание свинца в ионной форме составляет всего 10 –8 %. Однако он накапливается в океанских осадках в виде сульфитов или сульфатов. В пресной воде содержание свинца гораздо выше и может достигать 2 х 10 –6 %, а в почве примерно такое же количество, что и в земной коре (1,5 х 10 –3 %) из-за нестабильности этого элемента в геохимическом цикле.

Свинцовые руды содержат 2-20 % свинца. Концентрат, получаемый флотационным способом, содержит 60-80 % Рb. Его нагревают для удаления серы и выплавляют свинец. Такие первичные процессы крупномасштабны. Если же для получения свинца используют отходы, процессы выплавки называют вторичными. Ежегодное мировое потребление свинца составляет более 3 млн. т, из них 40 % используют для производства аккумуляторных батарей, 20% -для производства алкила свинца - присадки к бензину, 12% применяют в строительстве, 28 % для других целей.

Ежегодно в мире в результате воздействия атмосферных процессов мигрирует около 180 тыс. т свинца. При добыче и переработке свинцовых руд теряется более 20 % свинца. Даже на этих стадиях выделение свинца в среду обитания равно его количеству, попадающему в окружающую среду в результате воздействия на магматические породы атмосферных процессов.

Наиболее серьезным источником загрязнения среды обитания организмов свинцом являются выхлопы автомобильных двигателей. Антидетонатор тетраметил - или тетраэтилсвинеп - прибавляют к большинству бензинов, начиная с 1923 г., в количестве около 80 мг/л. При движении автомобиля от 25 до 75% этого свинца в зависимости от условий движения выбрасывается в атмосферу. Основная его масса осаждается на землю, но и в воздухе остается заметная ее часть.

Свинцовая пыль не только покрывает обочины шоссейных дорог и почву внутри и вокруг промышленных городов, она найдена и во льду Северной Гренландии, причем в 1756 г. содержание свинца во льду составляло 20 мкг/т, в 1860 г. уже 50 мкг/т, а в 1965 г. - 210 мкг/т.

Активными источниками загрязнения свинцом являются электростанции и бытовые печи, работающие на угле.

Источниками загрязнения свинцом в быту могут быть глиняная посуда, покрытая глазурью; свинец, содержащийся в красящих пигментах.

Свинец не является жизненно необходимым элементом. Он токсичен и относится к I классу опасности. Неорганические его соединения нарушают обмен веществ и являются ингибиторами ферментов (подобно большинству тяжелых металлов). Одним из наиболее коварных последствий действия неорганических соединений свинца считается его способность заменять кальций в костях и быть постоянным источником отравления в течение длительного времени. Биологический период полураспада свинца в костях - около 10 лет. Количество свинца, накопленного в костях, с возрастом увеличивается, и в 30-40 лет у лиц, по роду занятий не связанных с загрязнением свинца, составляет 80-200 мг.

Органические соединение свинца считаются ещё более токсичными, чем неорганические.Вдыхаемая пыль примерно на 30-35 % задерживается в легких, значительная доля её всасывается потоком крови. Всасывания в желудочно-кишечном тракте составляют в целом 5-10 %, у детей – 50 %. Дефицит кальция и витамина Д усиливает всасывание свинца. Вследствие глобального загрязнения окружающей среды свинцом он стал вездесущим компонентом любой пищи и кормов. Растительные продукты в целом содержат больше свинца, чем животные.

Среди твердых частиц наиболее опасны частицы, размером менее 5 мкм, которые способны задерживаться в альвеолах легких, засорять слизистые оболочки. Примеси в атмосферном воздухе свинца, фосфора, кадмия, мышьяка, кобальта угнетают кроветворную систему, вызывают онкологические заболевания, снижают иммунитет. Пыль, содержащая соединения свинца и ртути, обладает мутагенными свойствами.

Вредные вещества, содержащиеся в выхлопных газах автомобилей, могут оказывать на организм человека различные негативные влияния, представленные в таблице 1.

Влияние выхлопных газов автомобилей на здоровье человека

Вредные вещества Последствия воздействия на организм человека
Оксид углерода препятствует абсорбированию кровью кислорода, ослабляет рефлексы, вызывает сонливость, может быть причиной потери сознания и смерти
Свинец влияет на кровеносную, нервную и мочеполовую системы, откладывается в костной ткани, поэтому опасен в течение длительного времени
Оксиды азота снижают противовирусный иммунитет, раздражают легкие, вызывают бронхит и пневмонию
Озон раздражает слизистую оболочку органов дыхания, вызывает кашель, нарушает работу легких, снижает сопротивляемость простудным заболеваниям, способствует обострению заболеваний сердца, может вызывать бронхит и астматические явления
Тяжелые металлы обладают онкогенностью, нарушают функцию половой системы и вызывают дефекты у новорожденных

Тяжелые последствия для организма человека вызывает смог, ядовитая смесь дыма, тумана и пыли. Различают два типа смога: зимний (лондонский) смог и летний (лос-анжелесский) смог. Лондонский тип смога возникает зимой в крупных промышленных городах при отсутствии ветра и температурной инверсии. Температурная инверсия представляет собой повышение температуры воздуха в определенном слое атмосферы (обычно 300-400 м от поверхности Земли) вместо обычного понижения. При этом нарушается циркуляция воздуха, дым и загрязняющие вещества не могут подняться вверх и не рассеиваются. Нередко возникают туманы. Концентрация оксидов серы и углерода, взвешенной пыли достигает опасных для здоровья человека уровней, приводит к расстройству пищеварения, дыхания, а нередко – и к смерти. Так, в 1952 году в Лондоне от смога погибло более 4 тыс. человек, а около 10 тыс. человек тяжело заболели.

Лос-анжелесский тип смога, или фотохимический смог, возникает летом при интенсивном воздействии солнечной радиации на воздух, перенасыщенный выхлопными газами автомобилей. При безветрии в этих условиях происходят реакции образования новых высокотоксичных загрязнителей – фотоокисидантов (озона, органических перекисей, нитритов и др.), которые воздействуют на слизистые оболочки желудочно-кишечного тракта, легких и органов зрения. В 1971 году в Токио фотохимический смог вызвал отравление у 28 тыс. человек. В Афинах в дни смога смертность в шесть раз выше, чем в дни с относительно чистой атмосферой. Антропогенные выбросы загрязняющих веществ наносят вред животным, пагубно влияют на состояние растений, что приводит к разрушению природных экосистем на всей планете.

38. Ионообменный метод – это метод обмена ионами находящимися в растворе и ионами, присутствующими на поверхности твёрдой фазы (ионита). Очистка производственных сточных вод методами ионного обмена позволяет извлекать и утилизировать ценные примеси, ПАВ или радиоактивные вещества.

Важнейшим свойством ионитов является их подготовительная способность, так называемая обменная емкость. Полная ёмкость ионита – количество находящихся в сточной воде грамм-эквивалентов ионов, которое может поглотить 1 м3 ионита до полного насыщения.

Характерной особенностью ионитов является их обратимость то есть возможность проведения реакции в обратном направление, что и лежит в основе их регенерации. Различают химическую, термохимическою, и электрохимическую регенерацию.

Электрохимическая очистка сточных вод

Электролиз, при котором имеет место направленное движение ионов и заряженных дисперсных частиц и протекание реакций окисления на аноде и восстановления на катоде.

Электрофлотация - удаление твердых частиц дисперсной фазы осуществляется путем флотации их пузырьками водорода и кислорода, образующихся в результате электролиза водной части осветляемой жидкости. Катод 2H2O + 2e -> H2 + 2OH-. OH - ионы движутся в аноду, где отдают свой заряд с выделением O2. 4OH– 4e ->2H2O + O2. По сравнению с обычной флотацией пузырьки по размерам на 1 – 2 порядка меньше. Пузырьки – однородны и выделяются в больших количествах.

Электрофорез – процесс переноса частиц в электрическом поле. Причина – наличие разноименных зарядов у разных фаз. В результате возникновения электрического поля м/у электродами, благодаря малым размерам частиц дисперсной фазы происходит перенос отрицательно заряженной дисперсной фазы к положительному электроду. Заряд на частицах обусловлен наличием на их поверхности двойного электрического слоя из ионов, возникающего либо в результате избирательной адсорбции одного из ионов электролита, либо за счет ионизации поверхностных молекул вещества.

Электрокоагуляция – в процессе анодного растворения образуются коагулянты – гидроксиды металлов, которые снимают, поверхностный заряд частиц под воздействием электрического поля.

ОБРАТНЫЙ ОСМОС (гиперфильтрация), - метод концентрирования или уменьшения засоленности р-ров, заключающийся в подаче их под давлением на мембрану полупроницаемую. Мембрана пропускает растворитель и полностью или частично задерживает растворённое в-во. О. о. применяется для опреснения солёных и очистки сточных вод, разделения азеотропных и др. трудноразделяемых смесей, смещения равновесия хим. реакций.

эвапорационный способ очистки — физико-химический метод очистки производственных сточных вод с помощью водяного пара.

Эвапорационная очистка производится путём пропускания через нагретую приблизительно до 100° C сточную воду насыщенного водяного пара. Проходя через воду, пар увлекает загрязняющие её летучие вещества, после чего очищается от них при прохождении через также нагретое приблизительно до 100° C вещество-поглотитель и поступает для повторного использования.

Устройства для очистки данным способом называются эвапорационными колоннами и состоят из двух основных частей — эвапорационной и поглотительной.

Основными преимуществами эвапорационного способа очистки являются относительная простота при высоких технико-экономических показателях и отсутствие добавочного загрязнения в виде реагентов, остающихся в воде. В сточных водах содержится сложная смесь твердых и растворенных веществ, которые присутствуют в очень малых концентрациях. На очистных станциях концентрации всех этих веществ снижают до приемлемого уровня или химически трансформируют вредные вещества в безопасные соединения. Схема очистной станции зависит от степени загрязненности и количества обрабатываемых стоков, а также от экономических и экологических соображений. Большая часть водоочистных станций, имеет много общего. Так в операциях первичной обработки удаляют наиболее легко отделяющиеся загрязнения, например крупные, легкоосаждающиеся частицы, масляные пленки и другие «легкие» компоненты. Суспендированные твердые частицы и растворимые компоненты отделяют в процессе вторичной обработки. Во многих случаях загрязняющие вещества имеют органическую природу; в таких случаях обычно используют биологическое окисление. Цель третичной обработки заключается в полном или частичном отделении всех оставшихся примесей. На этой стадии используются такие физико-химические методы, как электродиализ, обратный осмос, фильтрование через толстый слой и адсорбция.

В процессе первичной обработки отделяют влажные концентрированные твердые вещества, называемые илом; при вторичной обработке образуется активный клеточный ил. В этом процессе существует взаимосвязь между утилизацией субстрата и образованием биомассы. Хотя процессы вторичной биологической обработки с участием множества видов микроорганизмов очень эффективны при деградации разбавленных смесей органических отходов, при расчётах следует учитывать, что при этом образуется, и биомасса. Таким путем очень мелкие нерастворимые частицы и растворенные компоненты жидких отходов частично превращаются в ил, который легче поддается отделению, чем исходные загрязняющие вещества. Установки для переработки ила являются важной составной частью станций по очистке сточных вод. Для уменьшения объема ила, образующегося при очистке воды, широко применяется операция анаэробной переработки, при которой органические вещества подвергаются биологической деградации в анаэробных условиях.

Но на практике все три уровня очистки сточных вод и переработки ила используются не всегда. Иногда сточные воды спускают в природные водоемы (ручьи, реки, пруды, озера и океан) без обработки. В других случаях применяют только первичную обработку. Например, для большинства городских систем водоочистки в США та или иная форма вторичной обработки является обязательной, а третичная обработка в настоящее время применяется лишь изредка.

Аэротенк — это очистное сооружение или резервуар, служащий для очистки стоков биологическим путем через окисление их бактериями, которые находятся в аэрируемом слое.

В устройстве аэротенк стоки очищаются посредством нагнетания воздуха, который подается компрессором, что создает идеальные условия для развития бактерий, очищающих бытовые стоки. Степень очистки в устройстве аэротенк достигает 98 процентов. Установка биологической очистки Топас имеет три рабочих отсека. Каждый отсек представляет собой аэротенк для последующей очистки. Из отсека в отсек жидкость перекачивается насосом, который по другому называется «эрлифт». В процессе перекачки жидкости в аэротенк происходит не только насыщение ее кислородом, но и циркуляция ила, что препятствует образованию илистых отложений. Активный ил образуется из взвешенных частиц и микроорганизмов, которые находятся в сточной жидкости. Микроорганизмы, которые находятся в сточной воде, поглощаются активным илом, что приводит к их гибели или превращению в активных агентов.

Отключение аэротенка от электричества на несколько часов не вызывает гибель бактерий. Серия установок Топас разработана, с использованием технологических процессов и конструктивных особенностей больших очистных станций с прерывистой и непрерывной мелкопузырчатой аэрацией, с применением собственных разработок и лучших мировых технологий.

37. Методы очистки воды — способы отделения воды от нежелательных примесей и элементов. Существуют несколько методов очистки и все они входят в три группы методов:

механические

физико-химические

биологические

Наиболее дешевая — механическая очистка — применяется для выделения взвесей. Основные методы: процеживание, отстаивание и фильтрование. Применяются, как предварительные этапы.

Химическая очистка применяется для выделения из сточных вод растворимых неорганических примесей. При обработке сточных вод реагентами происходит их нейтрализация, выделение растворенных соединений, обесцвечивание и обеззараживание стоков.

Физико-химическая очистка применяется для очистки сточных вод от грубо- и мелкодисперсионных частиц, коллоидных примесей, растворенных соединений. Высокопроизводительный, но в то же время дорогой способ очистки.

Биологические методы применяются для очистки от растворенных органических соединений. Метод основан на способности микроорганизмов разлагать растворенные органические соединения. В настоящее время из общего количества сточных вод механической очистки подвергается 68 % всех стоков, физико-химической- 3 %, биологической — 29 %. В перспективе предполагается повысить долю очистки биологическим методом до 80 %, что улучшит качество очищаемой воды.

 

Основным методом повышения качества очистки вредных выбросов предприятиям при рыночной экономике является система штрафов, а также система плат за пользование очистными сооружениями.

Экстракционный метод очистки производственных сточных вод основан на том, что в смеси двух взаимнонерастворимых жидкостей всякое иное вещество, находящееся в растворе, распределится между этими жидкостями соответственно своей растворимости в них. При очистке сточных вод в качестве экстрагентов обычно применяют органические растворители, которые не смешиваются с водой (бензол, минеральные масла, четыреххлористый углерод и т.п.).

Сточные воды нейтрализуются при их химическом взаимодействии с веществами. Производственные сточные воды многих предприятий с повышенным содержанием кислот или щелочей нельзя спускать в канализационную сеть, на очистные станции и в водоемы без предварительного доведения концентрации этих загрязнений до допустимых значений. К таким производственным сточным водам относятся воды химических, машиностроительных, металлургических и нефтеперерабатывающих заводов и особенно тех заводов, где имеются гальванические и термические цехи.

Сорбционные способы очистки

Сорбция является одним из универсальных способов глубокой очистки от растворенных органических веществ сточных вод таких производств, как коксохимические, сульфат-целлюлозные, хлорорганические, синтеза полупродуктов, красителей и др. Для удаления органических веществ, определяемых величиной ВПК, пригодна биологическая очистка. Для удаления стойких органических веществ, определяемых ХПК, биологическая очистка не является эффективной. Даже хорошо очищенные сточные воды после биологической очистки имеют загрязнения органическими веществами, величина которых по ХПК равна 20—120 мг/л. Эти вещества включают танины, лигнины, эфиры, протеиновые вещества и другие органические загрязнения, имеющие цветность и запахи, пестициды, такие, как ДДТ, и др. Сорбционная очистка сточных вод используется как до биологической очистки, так и после нее. В последнее время исследуется возможность замены биологической очистки производственных и бытовых сточных вод сорбционной очисткой.

В отличие от биохимического процесса колебания температуры и влияние токсичности для сорбции не имеют такого большого значения, кроме того, легче решаются вопросы удаления осадка и автоматизации, сложные для станций биологической очистки. Применяются три типа сорбции.

8. Влияние оксида углерода на человека. Концентрация СО, превышающая предельно допустимую, приводит к физиологическим изменениям в организме человека, а концентрация более 750 млн к смерти. Объясняется это тем, что СО - исключительно агрессивный газ, легко соединяющийся с гемоглобином (красными кровяными тельцами). При соединении образуется карбоксигемоглобин, повышенное (сверх нормы, равной 0.4%) содержание которого в крови сопровождается: а) ухудшением остроты зрения и способности оценивать длительность интервалов времени, б) нарушением некоторых психомоторных функций головного мозга (при содержании 2-5%), в) изменениями деятельности сердца и легких (при содержании более 5%), г) головными болями, сонливостью, спазмами, нарушениями дыхания и смертностью (при содержании 10-80%).

9. По мере удаления от источника выброса все большее количество NO превращается в NO2 - бурый, обладающий характерным неприятным запахом газ. Диоксид азота сильно раздражает слизистые оболочки дыхательных путей. Вдыхание ядовитых паров диоксида азота может привести к серьезному отравлению. Диоксид азота вызывает сенсорные, функциональные и патологические эффекты. Рассмотрим некоторые из них. К сенсорным эффектам можно отнести обонятельные и зрительные реакции организма на воздействие NO2. Даже при малых концентрациях, составляющих всего 0,23 мг/м3, человек ощущает присутствие этого газа. Эта концентрация является порогом обнаружения диоксида азота. Однако способность организма обнаруживать NO2 пропадает после 10 минут вдыхания, но при этом ощущается чувство сухости и першения в горле. Хотя и эти признаки исчезают при продолжительном воздействии газа в концентрации, в 15 раз превышающей порог обнаружения. Таким образом, NO2 ослабляет обоняние. Но диоксид азота воздействует не только на обоняние, но и ослабляет ночное зрение – способность глаза адаптироваться к темноте. Этот эффект же наблюдается при концентрации 0,14 мг/м3, что, соответственно, ниже порога обнаружения.

Функциональным эффектом, вызываемым диоксидом азота, является повышенное сопротивление дыхательных путей. Иными словами, NO2 вызывает увеличение усилий, затрачиваемых на дыхание. Эта реакция наблюдалась у здоровых людей при концентрации NO2 всего 0,056 мг/м3, что в четыре раза ниже порога обнаружения. А люди с хроническими заболеваниями легких испытывают затрудненность дыхания уже при концентрации 0,038 мг/м3.

Патологические эффекты проявляются в том, что NO2 делает человека более восприимчивым к патогенам, вызывающим болезни дыхательных путей. У людей, подвергшихся воздействию высоких концентраций диоксида азота, чаще наблюдаются катар верхних дыхательных путей, бронхиты, круп и воспаление легких. Кроме того, диоксид азота сам по себе может стать причиной заболеваний дыхательных путей. Попадая в организм человека, NO2 при контакте с влагой образует азотистую и азотную кислоты, которые разъедают стенки альвеол легких. При этом стенки альвеол и кровеносных капилляров становятся настолько проницаемыми, что пропускают сыворотку крови в полость легких. В этой жидкости растворяется вдыхаемый воздух, образуя пену, препятствующую дальнейшему газообмену. Возникает отек легких, который зачастую ведет к летальному исходу. Длительное воздействие оксидов азота вызывает расширение клеток в корешках бронхов (тонких разветвлениях воздушных путей альвеол), ухудшение сопротивляемости легких к бактериям, а также расширение альвеол. Некоторые исследователи считают, что в районах с высоким содержанием в атмосфере диоксида азота наблюдается повышенная смертность от сердечных и раковых заболеваний.

10 Формальдегид – раздражающий газ, обладающий общей ядовитостью. Он оказывает общетоксическое действие. Вызывает поражение ЦНС, легких, печени, почек, органов зрения. Возможно кожно-резорбтивное действие. Формальдегид обладает аллергенным, мутагенным, сенсибилизирующим, канцерогенным действием. Предполагается, что основным путем поступления формальдегида в организм является ингаляционный. Курение – дополнительный источник. Поступление с водой – пренебрежимо мало. Опасен при попадании на кожу, слизистые, при вдыхании.

Формальдегид официально назван канцерогеном. Основной путь поступления формальдегида в организм – ингаляционный. Класс опасности вещества – 2. Формальдегид не очень популярен в интернете (всего около 765 тыс. страниц, выдает «Яндекс» по данному запросу), но в жизни, к сожалению, довольно часто встречается. Формальдегид широко применяется в производстве: в медицинской, химической и лесной промышленности, и без него многие предприятия просто бы остановились, со всеми вытекающими последствиями. То есть формальдегид кормит сотни тысяч людей!

Применяют формальдегид при изготовлении пластмасс, а основная часть формальдегида идет на изготовление ДСП и других древесностружечных материалов. В них феноло-формальдегидная смола составляет 6-18% от массы стружек. Такой состав значительно удешевляет такую мебель, и делает ее более доступной для каждого.

Но, что мы получаем взамен, съэкономив на цене?

А в нагрузку к мебели, сделанной из таких материалов, мы получаем довольно приличную бочку с феноло-формальдегидной смолой, которая постоянно выделяет этот самый газ - формальдегид.

Что же такое формальдегид? Добро или зло? Какое влияние формальдегида на человека. В большинстве квартир уровень формальдегида достаточно велик, чтобы его замерить. С учетом того, что ПДК формальдегида очень низок 0,5 мг/м³, этот фактор не может не беспокоить. Только мебель для кухни или ванной потенциально может серьезно поднять уровень формальдегида в жилом помещении до 0,001 мг/м³ и выше, особенно, когда она новая. МДФ - самый серьезный источник формальдегида, найденный в жилых помещениях. Мебель, изготовленная из фанеры и натурального дерева (массива) или полностью из массива, тоже может быть источником формальдегида. В данном случае им становится лакокрасочные и прочие материалы, которыми обработали мебель, содержащие формальдегид, особенно в течение первых месяцев после применения.

Выделение формальдегида, а значит и его концентрация в помещении, зависит от температуры воздуха, и максимальна она, при теплых, влажных условиях, особенно в закрытых непроветриваемых помещениях. Выделяться формальдегид из исходных материалов (например из ДСП, из которого сделана мебель) не прекратится полностью никогда!

1. Чем опасны небольшие концентрации формальдегида? Симптомы хронического отравления формальдегидом (то есть когда в помещении постоянно присутствует довольно высокая концентрация формальдегида) - бледность, упадок сил, бессознательное состояние, депрессия, затрудненное дыхание, головная боль, не редко судороги по ночам.



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 86; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.29.209 (0.06 с.)