Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гигиеническое нормирование электростатических полей

Поиск

Допустимые уровни напряженности электростатических полей установлены стандартом ГОСТ 12.1.045 - 84 «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля».

Настоящий стандарт распространяется на электростатические поля, создаваемые при эксплуатации электроустановок высокого напряжения постоянного тока и электризации диэлектрических материалов и устанавливает допустимые уровни напряженности электростатических полей на рабочих местах персонала, а также общие требования к проведению контроля и средствам защиты.

Допустимые уровни напряженности электростатических полей устанавливаются в зависимости от времени пребывания на рабочих местах.

Предельно допустимый уровень напряженности электростатических полей (Епред) устанавливается равным 60 кВ/м в течение 1 ч.

При напряженности электростатических полей менее 20 кВ/м время пребывания в электростатических нолях не регламентируется.

В диапазоне напряженности от 20 до 60 кВ/м допустимое время пребывания персонала в электростатическом поле без средств защиты - tдоп (ч) определяется по формуле:

 

tдоп = (ЕПРЕД-2ФАКТ),

 

где ЕФАКТ - фактическое значение напряженности электростатического поля, кВ/м.

Применение средств защиты работающих обязательно в тех случаях, когда фактические уровни напряженности электростатических полей на рабочих местах превышают 60 кВ/м.

Для измерения напряженности электростатических полей применяются следующие приборы: измеритель напряженности электростатического поля ИНЭП-20Д и измеритель ИЭ-П.

Методы и средства защиты

При выборе средств защиты от статического электричества (экранирование источника поля или рабочего места, применение нейтрализаторов статического электричества, ограничение времени работы и др.) должны учитываться особенности технологических процессов, физико-химические свойства обрабатываемого материала, микроклимат помещений и др., что определяет дифференцированный подход при разработке защитных мероприятий.

Одним из распространенных средств защиты от статического электричества является уменьшение генерации электростатических зарядов или их отвод с наэлектризованного материала, что достигается: 1) заземлением металлических и электропроводных элементов оборудования 2) увеличением поверхностей и объемной проводимости диэлектриков; 3) установкой нейтрализаторов статического электричества.

Заземление проводится независимо от использования других методов защиты. Заземляются не только элементы оборудования, но и изолированные электропроводящие участки технологических установок.

Более эффективным средством защиты является увеличение влажности воздуха до 65 - 75%, когда это возможно по условиям технологического процесса.

В качестве индивидуальных средств защиты могут применяться антистатическая обувь, антистатический халат, заземляющие браслеты для защиты рук и другие средства, обеспечивающие электростатическое заземление тела человека.

Глава 5

ЛАЗЕРНОЕ ИЗЛУЧЕНИЕ

Слово «лазер» - аббревиатура, образованная из начальных букв английской фразы Light amplification by stimulated emission of radiation - усиление света за счет создания стимулированного излечения. Следовательно, лазер или оптический квантовый генератор - это генератор электромагнитного излучения оптического диапазона, основанный на использовании вынужденного (стимулированного) излучения. Идея о возможности использования неравновесных квантовых систем была впервые высказана еще в 1951 г. советским физиком В. А. Фабрикантом и его сотрудниками. Практически наименование «лазер» используется не только при генерации электромагнитного излучения видимого диапазона, но и для частот, лежащих в ближнем и дальнем инфракрасном, ультрафиолетовом и даже в рентгеновском диапазонах. Основополагающие работы в области квантовой электроники были отмечены присуждением Нобелевской премии по физике академикам А. М. Прохорову и Н. Г. Басову и американскому ученому Ч. Таунсу.

Лазер как техническое устройство состоит из трех основных элементов: активной среды, системы накачки и соответствующего резонатора. В зависимости от характера активной среды лазеры подразделяются на следующие типы: твердотельные, (на кристаллах или стеклах), газовые, лазеры на красителях, химические, полупроводниковые и др. В качестве резонатора обычно используют плоскопараллельные зеркала, с высоким коэффициентом отражения, между которыми размещается активная среда. Накачка, т. е. перевод атомов активной среды на верхний уровень, обеспечивается или посредством мощного источника света, или электрическим разрядом.

Основными техническими характеристиками лазеров являются: длина волны (l), мкм; ширина линии излучения (sl); интенсивность излучения лазеров, определяемая по величине энергии (Ww) или мощности (Ри) выходного пучка и выражаемая в джоулях (Дж) или ваттах (Вт); длительность импульса (tu) - измеряется в секундах (с); частота повторения импульсов F, измеряемая в герцах (Гц).

Классификация лазеров. В основу классификации лазеров, приведенной в «Санитарных нормах и правилах устройства и эксплуатации лазеров» (1981), положена степень опасности лазерного излучения для обслуживающего персонала. По этой классификации лазеры разделены на 4 класса:

класс 1 (безопасные) - выходное излучение не опасно для глаз;

класс 2 (малоопасные) - опасно для глаз прямое или зеркально отраженное излучение;

класс 3 (среднеопасные) - опасно для глаз прямое, зеркально, а также диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности, и (или) для кожи прямое или зеркально отраженное излучение;

класс 4 (высокоопасные) - опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.

Классификация определяет специфику воздействия излучения на орган зрения и кожу. В качестве ведущих критериев при оценке степени опасности генерируемого лазерного излучения приняты величина мощности (энергии), длина волны, длительность импульса и экспозиция облучения.

Существует классификация лазеров по физико-техническим параметрам, при этом учитывается агрегатное состояние активного рабочего вещества (твердое, жидкое, газообразное), характер генерации (импульсный, непрерывный), способ накачки активного вещества (оптический, электрический, химический и др.).



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 210; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.29.202 (0.006 с.)