Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общая характеристика привода↑ Стр 1 из 24Следующая ⇒ Содержание книги
Поиск на нашем сайте
Общая характеристика привода
Структурная схема гидропривода Гидроприводом называется совокупность устройств, предназначенных для приведения в движение механизмов и машин посредством рабочей жидкости, находящейся под давлением, с одновременным выполнением функций регулирования и реверсирования скорости движения выходного звена гидродвигателя. Гидроприводы могут быть двух типов: гидродинамические и объемные. В гидродинамических приводах используется в основном кинетическая энергия потока жидкости. В объемных гидроприводах используется потенциальная энергия давления рабочей жидкости. Объемный гидропривод состоит из гидропередачи, устройств управления, вспомогательных устройств и гидролиний (рис.1.1). Рис.1.1. Схема объемного гидропривода Объемная гидропередача, являющаяся силовой частью гидропривода, состоит из объемного насоса (преобразователя механической энергии приводящего двигателя в энергию потока рабочей жидкости) и объемного гидродвигателя (преобразователя энергии потока рабочей жидкости в механическую энергию выходного звена). В состав некоторых объемных гидропередач входит гидроаккумулятор (гидроемкости, предназначенные для аккумулирования энергии рабочей жидкости, находящейся под давлением, с целью последующего ее использования для приведения в работу гидродвигателя). Кроме того, в состав гидропередач могут входить также гидропреобразователи - объемные гидромашины для преобразования энергии потока рабочей жидкости с одними значениями давления P и расхода Q в энергию другого потока с другими значениями P и Q. Устройства управления предназначены для управления потоком или другими устройствами гидропривода. При этом под управлением потоком понимается изменение или поддержание на определенном уровне давления и расхода в гидросистеме, а также изменение направления движения потока рабочей жидкости. К устройствам управления относятся: Вспомогательные устройства обеспечивают надежную работу всех элементов гидропривода. К ним относятся: кондиционеры рабочей жидкости (фильтры, теплообменные аппараты и др.); уплотнители, обеспечивающие герметизацию гидросистемы; гидравлические реле давления; гидроемкости (гидробаки и гидроаккумуляторы рабочей жидкости) и др. Состав вспомогательных устройств устанавливают исходя из назначения гидропривода и условий, в которых он эксплуатируется. Гидролинии (трубы, рукава высокого давления, каналы и соединения) предназначены для прохождения рабочей жидкости по ним в процессе работы объемного гидропривода. В зависимости от своего назначения гидролинии, входящие в общую гидросистему, подразделяются на всасывающие, напорные, сливные, дренажные и гидролинии управления. Гидравлические линии В гидросистемах машин отдельные элементы находятся на расстоянии друг от друга и соединяются между собой гидролиниями. Гидролинии должны обладать: - достаточной прочностью; Трубопроводы в зависимости от своей конструкции делятся на жесткие и гибкие. Жесткие трубопроводы изготавливают из стали, меди, алюминия и его сплавов. Стальные применяют при высоких давлениях (до 320 ат). Трубы из сплавов алюминия применяют при давлениях до 150 ат и главным образом в гидросистемах машин с ограниченной массой (авиация). Медные трубопроводы при меньших давлениях (до 50 ат), там, где требуется изгиб труб под большими углами, что обеспечивает компактность гидросистемы, и применяются для дренажных линий. Гибкие трубопроводы (рукава) бывают двух видов: резиновые и металлические. Для изготовления резиновых рукавов применяют натуральную и синтетическую резину. Рукав состоит из эластичной внутренней резиновой трубки, упрочненной наружной оплеткой или внутренним текстильным каркасом (рис.2.1). Их применяют тогда, когда соединяемые трубопроводом гидроагрегаты должны перемещаться относительно друг друга. При этом благодаря своей упругости резиновый рукава уменьшают пульсацию давления в гидросистеме. Они имеют следующие недостатки: подвижность при изменении давления; снижение общей жесткости гидросистемы; малая долговечность (1,5…3 года). Поэтому при проектировании гидросистем машин резиновых рукавов следует по возможности избегать. Рис.2.1. Схемы конструкции рукавов с оплеткой: Металлические рукава имеют гофрированную внутреннюю трубу, выполненную из бронзовой или стальной ленты, и наружную проволочную оплетку. Между витками ленты находится уплотнитель. Рукава с хлопчатобумажным уплотнением предназначены для работы с температурой рабочей жидкости до 110 С, а с асбестовым уплотнением - до 300 С. Металлические рукава применяют в специфических условиях эксплуатации гидросистем, в контакте с агрессивными рабочими жидкостями. Рис.2.2. Металлические рукава: Соединения Соединениями отдельные трубы и гидроагрегаты монтируются в единую гидросистему. Кроме того, соединения применяют и тогда, когда в гидросистеме необходимо предусмотреть технологические разъемы. Соединения могут быть неразборными и разборными. Неразборные соединения применяют в недемонтируемых гидросистемах. Для соединения труб применяют сварку и пайку встык или используют муфты (переходные втулки) с прямыми с скошенными под углом 30 концами. При применении неразборных соединений масса гидролиний может быть уменьшена на 25…30% по сравнению с применением разборных соединений. Разборные соединения (неподвижные и подвижные) - это соединения при помощи фланцев, штуцеров, ниппелей и других соединительных элементов. Неподвижное разборное соединение может быть выполнено по наружному и внутреннему конусу, с врезающимся кольцом и фланцевое. Соединение по наружному конусу (рис.2.3) состоит из трубопровода 1 с развальцованным на конус концом, ниппеля 2, штуцера 3 и накидной гайки 4. Герметичность соединения обеспечивается плотным прилеганием развальцованного конца трубы к наружной поверхности штуцера и соответствующей затяжкой накидной гайки. Недостатками такого соединения являются: уменьшение прочности трубы в месте р?струба; возможность образования незаметных для глаза кольцевых трещин; сравнительно большой момент затяжки накидной гайки; небольшое количество переборок; применение специализированного инструмента для развальцовки. Рис.2.3. Соединение по наружному конусу Неподвижное разборное соединение по внутреннему конусу (рис.2.4) состоит из ниппеля 4, приваренного или припаянного к трубе 5, штуцера 2 и накидной гайки 1. Герметичность соединения обеспечивается плотным прилеганием наружной поверхности ниппеля к внутренней поверхности штуцера и затяжной накидной гайки. Соединение по внутреннему конусу допускает большое количество переборок, а при его монтаже не происходит нежелательных деформаций в трубах и в соединительной арматуре. Благодаря сферической поверхности ниппеля допускается небольшой перекос труб. Рис.2.4. Соединение по внутреннему конусу Соединение с врезающимся кольцом (рис.2.5) состоит из штуцера 1 с внутренней конической поверхностью 2, накидной гайки 5 и врезающегося кольца 3. Кольцо изготовлено из стали с цементированной поверхностью, а его конец, обращенный к штуцеру, имеет режущую кромку. При затяжке соединения гайкой режущая кромка врезается в трубу 4, происходит деформация кольца, которое получает форму, соответствующую конической поверхности штуцера. В результате обеспечиваются требуемые прочность и герметичность соединения. Рис.2.5. Соединение с врезающимся кольцом К неподвижным разборным соединениям относится и фланцевое соединение (рис.2.6), которое применяют при монтаже гидросистем с трубами, имеющими диаметр условного прохода более 32 мм при рабочих давлениях до 32 МПа. Герметичность обеспечивается установкой между фланцами уплотнительных колец. Рис.2.6. Фланцевое соединение Подвижное разборное соединение применяется в гидросистемах землеройных, строительных, лесных и других машин. Здесь нередко применяют гидроцилиндры, которые должны поворачиваться на небольшой угол относительно оси, проходящей через точку крепления гидроцилиндра. При монтаже таких гидросистем применяют подвижные соединения, имеющие одну, две и более степеней свободы. На рис.2.7, а приведено поворотное соединение с одной степенью свободы, которое состоит из штуцера 1 и закрепленного на нем поворотного угольника 2. От осевого перемещения угольник стопорится шайбой 3 и кольцом 4. Герметичность соединения обеспечивается резиновыми кольцами 5 с защитными шайбами 6. Другим примером подвижного соединения является свернутый в спираль трубопровод (рис.2.7, б). В этом случае спираль необходимо закрепить в двух точках (точки 1 и 2). Во время поворота гидроцилиндра спираль может растягиваться. Такой способ соединения может обеспечивать несколько степеней свободы. Рис.2.7. Подвижное разборное соединение: Способ заделки в концах гибких трубопроводов соединительной арматуры определяется давлением и конструкцией гибкого трубопровода. При давлении до 0,5 МПа (рис.2.8, а) конец рукава навинчивают на наконечник или на ниппель 1 с гребенчатой поверхностью и закрепляют хомутом 2. При давлениях до 10 МПа соединение конца рукава происходит в результате зажатия его между ниппелем и зажимной муфтой (обоймой). При таком способе (рис.2.8, б) рукав 1 ввинчивают в зажимную муфту 2, имеющую резьбу с большим шагом. Далее в муфту ввинчивают ниппель 3, который своей конусной поверхностью вдавливает конец рукава в резьбу муфты и зажимает его. Для давлений более 10 МПа муфту 2 обжимают в специальном цанговом приспособлении. Накидной гайкой 4 производят соединение рукава с гидрооборудованием. Рис.2.8. Заделка концов рукавов: Расчет гидролиний Целью расчета гидролиний является определение внутреннего диаметра трубопроводов, потерь давления на преодоление гидравлических сопротивлений и толщины стенок труб. Внутренний диаметр (условный проход) трубопровода d определяют по формуле или где Q - расход жидкости, м3/с для (2.1) и л/мин для (2.2); Скорость течения жидкости в трубопроводах зависит в основном от давления в гидросистеме (табл.2.2). Таблица 2.2 Рекомендуемые значения скорости рабочей жидкости Потеря давления на преодоление гидравлических сопротивлений по длине каждого участка трубопровода определяется по формуле где ρ- плотность рабочей жидкости, кг/м3; Если на пути движения рабочей жидкости встречаются местные сопротивления, то потеря давления в местных сопротивлениях определяется по формуле Вейсбаха где ζ- коэффициент местных сопротивлений. Значения коэффициентов ζ для наиболее распространенных видов местных сопротивлений принимают следующими: для штуцеров и переходников для труб ζ = 0,1…0,15; для угольников с поворотом под углом 90° ζ = 1,5…2,0; для прямоугольных тройников для разделения и объединения потоков ζ = 0,9…2,5; для плавных изгибов труб на угол 90° с радиусом изгиба, равным (3÷5)d ζ = 0,12…0,15; для входа в трубу ζ = 0,5; для выхода из трубы в бак или в цилиндр ζ = 1. При ламинарном режиме Т.М. Башта [3, с.29] для определения коэффициента гидравлического трения λ рекомендует при Re<2300 применять формулу а при турбулентном режиме течения жидкости в диапазоне Re = 2 300…100 000 коэффициент λ определяется по полуэмпирической формуле Блазиуса Если где ΔЭ - эквивалентная шероховатость труб (для новых бесшовных стальных труб ΔЭ = 0,05 мм, для латунных - ΔЭ = 0,02 мм, для медных - 0,01, для труб из сплавов из алюминия - 0,06, для резиновых шлангов - 0,03), то коэффициент гидравлического трения определяется по формуле А.Д. Альтшуля Потери давления в гидроаппаратуре Δ Pга принимают по ее технической характеристике после выбора гидроаппаратуры. После этого суммируют потери давления Δ P =Δ Pдл +Δ Pм +Δ P га При выполнении гидравлического расчета производят проверку бескавитационной работы насоса. Вакуум у входа в насос определяют по формуле где hs - расстояние от оси насоса до уровня рабочей жидкости в баке; hтр - потери напора на преодоление всех гидравлических сопротивлений во всасывающей гидролинии; υ - скорость движения жидкости во всасывающей гидролинии; α - коэффициент Кориолиса. Рекомендуемый (с запасом на бескавитационную работу насоса) вакуум Pв у входа в насос должен быть не более 0,04 МПа. Если Pв > 0,04 МПа, то нужно увеличить диаметр всасывающего трубопровода или расположить бак выше оси насоса. При этом считается, что рабочая жидкость находится в баке с атмосферным давлением Pатм = 0,1 МПа. Таким образом, разность давлений в баке Pб (с атмосферным или избыточным давлением) и на входе в насос Pв не должна быть меньше 0,06 МПа. Определение толщины стенок является проверочным расчетом на прочность жестких труб, подобранных по ГОСТу. Толщину стенки трубы определяют по формуле где P - максимальное статическое давление; С учетом возможных механических повреждений толщина стенок стальных труб должна быть не менее 0,5 мм, а для медных - не менее 0,8…1,0 мм Насосы и гидромоторы
3.1. Некоторые термины и определения Насос - гидравлическая машина, в которой механическая энергия, приложенная к выходному валу, преобразуется в гидравлическую энергию потока рабочей жидкости. Гидродвигатель - машина, в которой энергия потока рабочей жидкости преобразуется в энергию движения выходного звена. Если выходное звено получает вращательное движение, то такой гидродвигатель называют гидромотором, если поступательное, то силовым цилиндром. Гидромашина, которая может работать в режиме насоса или гидромотора, называется обратимой. Рабочий объем гидромашины в насосе - это объем жидкости вытесняемый в систему за один оборот вала насоса; в гидромоторе - объем жидкости, необходимый для получения одного оборота вала гидромотора. Гидромашины изготавливаются с постоянным и переменным рабочим объемом. В соответствии с этим с постоянным рабочим объемом называются нерегулируемые, а с переменным - регулируемые. Гидролиния (магистраль) - как уже говорилось в лекции 2, это трубопровод, по которому транспортируется рабочая жидкость. Различают магистрали всасывающие, напорные, сливные и дренажные. Производительность насоса (подача) - это отношение объема подаваемой жидкости ко времени. Теоретическая производительность насоса QТ - это расчетный объем жидкости, вытесняемый в единицу времени из его полости нагнетания. Действительная производительность насоса QД уменьшается на величину QН из-за обратного течения жидкости в насосе из полости нагнетания в полость всасывания и из-за утечки жидкости во внешнюю среду. Поэтому QД = QТ - QН, а отношение где η об.н. - объемный КПД насоса. Объемные потери и объемный КПД гидромотора. При работе машины в режиме гидромотора в приемную его полость поступает жидкость под давлением от насоса. Объемные потери в гидромоторе сводятся в основном к утечкам жидкости через зазоры между сопрягаемыми элементами. Это приводит к тому, что подводимый объем жидкости QП превышает теоретическое значение QТ. Поэтому где Δ QМ - величина утечек в гидромоторе (объемные потери). Мощность и крутящий момент на валу гидромотора. Фактическая мощность развиваемая гидромотором при данном перепаде давлений NM факт = Δ PqMnMηM где qм - рабочий объем гидромотора; Выразив крутящий момент через теоретическую мощность NТ = Δ Pqn и угловую скорость ω= 2πn, получим теоретическую величину крутящего момента для гидромашины: Гидроцилиндры
В качестве исполнительных механизмов (гидродвигателей) применяются силовые цилиндры, служащие для осуществления возвратно-поступательных прямолинейных и поворотных перемещений исполнительных механизмов. Гидроцилиндры подразделяются на поршневые, плунжерные мембранные и сильфонные. Расчет гидроцилиндров Основными параметрами поршневого гидроцилиндра являются: диаметры поршня D и штока d, рабочее давление P, и ход поршня S. Рассмотрим поршневой гидроцилиндр с односторонним штоком (рис.4.6). По основным параметрам можно определить следующие зависимости: площадь поршня в поршневой полости 1 и в штоковой полости 2 соответственно усилие, развиваемое штоком гидроцилиндра при его выдвижении и втягивании соответственно где kтр = 0,9…0,98 - коэффициент, учитывающий потери на трение; скорости перемещения поршня Рис.4.6. Основные и расчетные параметры гидроцилиндра Расчеты на прочность. Прочностными расчетами определяют толщину стенок цилиндра, толщину крышек (головок) цилиндра, диаметр штока, диаметр шпилек или болтов для крепления крышек. В зависимости от соотношения наружного DН и внутреннего D диаметров цилиндры подразделяют на толстостенные и тонкостенные. Толстостенными называют цилиндры, у которых DН / D > 1,2, а тонкостенными - цилиндры, у которых DН / D 1,2. Толщину стенки однослойного толстостенного цилиндра определяют по формуле: где Pу - условное давление, равное (1,2…1,3) P; [σ] - допускаемое напряжение на растяжение, Па (для чугуна 2,5 107, для высокопрочного чугуна 4 107, для стального литья (8…10) 107, для легированной стали (15…18) 107, для бронзы 4,2 10 7); μ - коэффициент поперечной деформации (коэффициент Пуассона), равный для чугуна 0, для стали 0,29; для алюминиевых сплавов 0,26…0,33; для латуни 0,35. Толщину стенки тонкостенного цилиндра определяют по формуле: К определенной по формулам толщине стенки цилиндра прибавляется припуск на обработку материала. Для D = 30…180 мм припуск принимают равным 0,5…1 мм. Толщину крышки цилиндра определяют по формуле: где dк - диаметр крышки. Диаметр штока, работающего на растяжение и сжатие соответственно где [σр] и [σ с] - допускаемы напряжения на растяжение и сжатие штока; Штоки, длина которых больше 10 диаметров ("длинные" штоки), работающие на сжатие, рассчитывают на продольный изгиб по формуле Эйлера где σ кр - критическое напряжение при продольном изгибе; f - площадь поперечного сечения штока; Диаметр болтов для крепления крышек цилиндров где n - число болтов. Поворотные гидроцилиндры Для возвратно-поворотных движений приводимых узлов на угол, меньший 360, применяют поворотные гидроцилиндры (рис.4.7.), которые представляют собой объемный гидродвигатель с возвратно-поворотным движением выходного звена. Рис.4.7. Поворотный однолопастной гидроцилиндр: Поворотный гидроцилиндр состоит из корпуса 1, и поворотного ротора, представляющего собой втулку 2, несущую пластину (лопасть) 3. Кольцевая полость между внутренней поверхностью цилиндра и ротором разделена уплотнительной перемычкой 4 с пружинящим поджимом к ротору уплотнительного элемента 5. При подводе жидкости под давлением Pр в верхний канал (см. рис.4.7, а) пластина 3 с втулкой 2 будет поворачиваться по часовой стрелке. Угол поворота вала цилиндра с одной рабочей пластиной обычно не превышает 270…280. Расчетный крутящий момент М на валу рассматриваемого гидроцилиндра с одной пластиной равен произведению силы R на плечо а приложения этой силы (расстояние от оси вращения до центра давления рабочей площади пластины) M = Ra Усилие R определяется произведением действующего на лопасть перепада давлений на рабочую площадь пластины F R = Δ PF = (Pр - Pсл) F Из рис.4.7, а видно, что рабочая площадь пластины где b - ширина пластины. Плечо приложения силы В соответствии с этим расчетный крутящий момент Угловая скорость ω вращения вала Фактические момент MФ и угловая скорость ф будут меньше расчетных в связи с наличием потерь трения и утечек жидкости, характеризуемых механическим м и объемным об КПД гидроцилиндра: Применяются также и многопластинчатые поворотные гидроцилиндры (рис.4.8), которые позволяют увеличить крутящий момент, однако угол поворота при этом уменьшится. Момент и угловая скорость многопластинчатого гидроцилиндра: где z - число пластин. Рис.4.8. Поворотные гидроцилиндры: Для преобразования прямолинейного движения выходного звена гидроцилиндра 1 в поворотное исполнительного механизма 2 применяют речно-шестеренные механизмы (рис.4.9). Без учета сил трения крутящий момент на валу исполнительного механизма равен а угловая скорость вращения где DЗ - диаметр делительной окружности шестерни. Рис.4.9. Речно-шестеренный механизм 4.10. Условное обозначение поворотного гидроцилиндра
Гидрораспределители
Общие сведения При эксплуатации гидросистем возникает необходимость изменения направления потока рабочей жидкости на отдельных ее участках с целью изменения направления движения исполнительных механизмов машины, требуется обеспечивать нужную последовательность включения в работу этих механизмов, производить разгрузку насоса и гидросистемы от давления и т.п. Эти и некоторые другие функции могут выполняться специальными гидроаппаратами - направляющими гидрораспределителями. При изготовлении гидрораспределителей в качестве конструктивных материалов применяют стальное литье, модифицированный чугун, высоко- и низкоуглеродистые марки сталей, бронзу. Для защиты отдельных элементов распределителей от абразивного износа, поверхности скольжения цементируют, азотируют и т.п. Размеры и масса гидрораспределителей зависят от расхода жидкости через них, с увеличением которого они увеличиваются. По способу присоединения к гидросистеме гидрораспределители выпускают в трех исполнениях: резьбового, фланцевого и стыкового присоединения. Выбор способа присоединения зависит от назначения гидрораспределителя и расхода через него рабочей жидкости. По конструкции запорно-регулирующего элемента гидрораспределители подразделяются следующим образом: Золотниковые (запорно-регулирующим элементом является золотник цилиндрической или плоской формы). В золотниковых гидрораспределителях изменение направления потока рабочей жидкости осуществляется путем осевого смещения запорно-регулирующего элемента. Крановые (запорно-регулирующим элементом служит кран). В этих гидрораспределителях изменение направления потока рабочей жидкости достигается поворотом пробки крана, имеющей плоскую, цилиндрическую, коническую или сферическую форму. Клапанные (запорно-регулирующим элементом является клапан). В клапанных распределителях изменение направления потока рабочей жидкости осуществляется путем последовательного открытия и закрытия рабочих проходных сечений клапанами (шариковыми, тарельчатыми, конусными и т.д.) различной конструкции. По числу фиксированных положений золотника гидрораспределители подразделяются: на двухпозиционные, трехпозиционные и многопозиционные. По управлению гидрораспределители подразделяются на гидроаппараты с ручным, электромагнитным, гидравлическим или электрогидравлическим управлением. Крановые гидрораспределители используются чаще всего в качестве вспомогательных в золотниковых распределителях с гидравлическим управлением. Напорные гидроклапаны Напорные гидроклапаны предназначены для ограничения давления в подводимых к ним потоках рабочей жидкости. На рис.6.1 приведены принципиальные схемы напорных клапанов прямого действия с шариковым, конусным, плунжерным и тарельчатым запорно-регулирующими элементами. Рис.6.1. Принципиальные схемы напорных клапанов с запорно-регулирующими элементами: Клапан состоит из запорно-регулирующего элемента 1 (шарика, конуса и т.д.), пружины 2, натяжение которой можно изменять регулировочным винтом 3. Отверстие 5 корпуса 4 соединяется с линией высокого давления, а отверстие 6 - со сливной линией. Часть корпуса, с которой запорно-регулирующий элемент клапана приходит в соприкосновение, называется седлом (посадочным местом). При установке клапана в гидросистему пружина 2 настраивается так, чтобы создаваемое ею давление было больше рабочего, тогда запорно-регулирующий элемент будет прижат к седлу, а линия слива будет отделена от линии высоко давления. При повышении давления в подводимом потоке сверх регламентированного запорно-регулирующий элемент клапана перемещается вверх, преодолевая усилие пружины, рабочее проходное сечение клапана открывается, и гидролиния высокого давления соединяется со сливной. Вся рабочая жидкость идет через клапан на слив. Как только давление в напорной гидролинии упадет, клапан закроется, и если причина, вызвавшая повышение давления не будет устранена, процесс повторится. Возникает вибрация запорно-регулирующего элемента, сопровождаемая ударами о седло и колебаниями давления в системе. Вибрация и удары могут служить причиной износа и потери герметичности клапанов. Для уменьшения силы удара и частоты колебаний клапана о седло применяют специальные гидравлические демпферы (рис.6.1, б, г). Устройство состоит из камеры 7, в которой перемещается плунжер 8. Камера заполнена жидкостью. С линией слива эта камера соединяется тонким калибровочным отверстием 9 диаметром 0,8…1 мм. При открывании клапана плунжер вытесняет жидкость из камеры демпфера. Создаваемое при этом гидравлическое сопротивление, пропорциональное скорости движения плунжера, уменьшает частоту колебаний, силу удара запорно- регулирующего элемента и частично устраняет его вибрацию. Достоинство клапанов прямого действия - высокое быстродействие. Недостаток - увеличение размеров при повышении рабочего давления, а также нестабильность работы. При конструировании напорных клапанов их габарит и массу можно уменьшить, если применить дифференциальные клапаны или клапаны непрямого действия. Дифференциальный клапан (рис.6.2) состоит из плунжера 1, который имеет два пояска диаметрами D и d, на которые воздействует жидкость. Рис.6.2. Принципиальная схема дифференциального клапана Благодаря наличию поясков с разными диаметрами уменьшается активная площадь запорно-регулирующего элемента клапана, на которую воздействует жидкость, и он оказывается частично разгруженным. Это позволяет уменьшить размеры пружины и всего клапана в целом. Начальная сила натяжения пружины 2 определяется из уравнения С уменьшением разности площадей поясков хотя и уменьшается усилие пружины, но одновременно уменьшается и соотношение действующих на запорно-регулирующий элемент клапана сил давления жидкости и сил трения этого элемента о корпус клапана. При определенных соотношениях D и d эти силы могут оказаться несоизмеримы между собой и клапан перестанет работать. Поэтому в реальных конструкциях дифференциальных клапанов принимают следующее соотношение: Недостатком дифференциальных клапанов является скачкообразное изменение давления и расхода через клапан в момент его открытия. Поэтому величину хода запорно-регулирующего элемента клапана ограничивают величиной Еще большего уменьшения размеров пружины и всего клапан в целом при одновременном повышении его герметичности можно достигнуть в клапанах непрямого действия (рис.6.3). Рис.6.3. Напорный клапан непрямого действия: Клапан состоит из основного запорно-регулирующего элемента - золотника 1 ступенчатой формы; нерегулируемой пружины 2 и вспомогательного запорно-регулирующего элемента 3 в виде шарикового клапана прямого действия. Усилие пружины 4 шарикового клапана регулируется винтом 5. Каналами в корпусе клапана полости 7 и 8 соединены с гидролинией 10 высокого давления. Полость 6 соединена с полостью 8 капиллярным каналом 9 в золотнике. Пружины шарикового клапана 3 настраивается на давление PК (на 10…20% больше максимального рабочего в гидросистеме). Если при работе машины давление в гидросистеме PН < PК, шариковый клапан закрыт, в полостях 6, 7, 8 устанавливается одинаковое давление PН, золотник 1 под воздействием пружины 2 занимает крайнее нижнее положение, а гидролиния высокого давления 10 отделена от гидролинии слива 11 (положение клапана соответствует изображенному на рис.6.3). Изменение давление в гидросистеме вызывает изменения давления в полостях 6, 7, 8 клапана. В тот момент, когда давление P Н превысит PК, шариковый клапан 3 откроется и через него жидкость в небольшом количестве начнет поступать на слив. В капиллярном канале золотника создается течение жидкости с потерей давления на преодоление гидравлических сопротивлений. Вследствие этого давление жидкости в полости 6 станет меньше давления в полостях 7 и 8. Под действием образовавшегося перепада давлений золотник 1 переместится вверх, сжимая пружину и соединяя линию 10 с линией 11. Рабочая жидкость будет поступать на слив, и перегрузки гидросистемы не произойдет. Однако как только линия высокого давления соединится со сливом, давление жидкости в гидросистеме уменьшится до PН < PК, шариковый клапан закроется и течение жидкости по капиллярному каналу прекратится. Давление в полостях 6, 7 и 8 выровняется и под воздействием пружины 2 золотник возвратится в исходное положение, снова отделив линию высокого давления от слива. Если причина, вызвавшая повышение давления в гидросистеме, не будет устранена, процесс повторится и золотник в конечном итоге установится на определенной высоте, при которой давление в гидросистеме будет поддерживаться постоянным. Когда клапан находится в работе, золотник совершает колебательные движения. Уменьшению колебаний золотника способствует полость 7, оказывающая на него демпфирующее влияние. Для разгрузки системы или какого-либо ее учатка клапаны непрямого действия могут управляться дистанционно. Для этого полость 6 посредством канала 12 и крана 13 необходимо соединить со сливом. В результате давление в полости 6 резко упадет, золотник 1 поднимется вверх, а линия высокого давления 10 соединится со сливом 11. По сравнению с клапанами прямого действия клапаны непрямого действия обладают рядом преимуществ: Редукционный клапан Редукционным называют гидроклапан давления, предназначенный для поддержания в отводимом от него потоке рабочей жидкости более низкого давления, чем давление в подводимом потоке. В гидроприводах находят применение в основном два типа редукционных клапанов. Первый тип клапанов обеспечивает установленное соотношение между давлениями на входе и выходе из клапана. Редукционный клапан (рис.6.4) состоит из запорно-регулирующего элемента - плунжера 1, прижа
|
||||
Последнее изменение этой страницы: 2016-12-30; просмотров: 125; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.157.241 (0.016 с.) |