Основы проектирования зданий 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основы проектирования зданий



Природно-климатические факторы.

Нормативные требования проектирования, предъявляемые к жилым зданиям, отличаются от требований по проектированию общественных зданий. В основном это требования по пожарной безопасности, требования предъявляемые к инженерии проектируемого жилого здания, планировочные ограничения жилой застройки. Также необходимо учесть специфику жилого проектирования в части архитектурной планировки, объемно-пространственного решения проектируемого жилого здания, норм предъявляемых к размещению автотранспорта жильцов и норм в части культурно-бытового обслуживания проектируемого жилого здания, норм по обеспечению жизнедеятельности мало мобильных групп жильцов или посетителей встроенных помещений жилого комплекса зданий.

.

Нагрузка определенного вида характеризуется, как правило, одним нормативным значением. Для нагрузок от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий, от мостовых и подвесных кранов, снеговых, температурных климатических воздействий устанавливаются два нормативных значения: полное и пониженное (вводится в расчет при необходимости учета влияния длительности нагрузок, проверке на выносливость и в других случаях, оговоренных в нормах проектирования конструкций и оснований).

Классификация нагрузок

1.4. В зависимости от продолжительности действия нагрузок следует различать постоянные и временные (длительные, кратковременные, особые) нагрузки.

1.5. Нагрузки возникающие при изготовлении, хранении и перевозке конструкций, а также при возведении сооружений, следует учитывать в расчетах как кратковременные нагрузки.

1.6. К постоянным нагрузкам следует относить:

а) вес частей сооружений, в том числе вес несущих и ограждающих строительных конструкций;

б) вес и давление грунтов (насыпей, засыпок), горное давление.

Сохраняющиеся в конструкции или основании усилия от предварительного напряжения следует учитывать в расчетах как усилия от постоянных нагрузок.

1.7. К длительным нагрузкам следует относить:

а) вес временных перегородок, подливок и подбетонок под оборудование;

б) вес стационарного оборудования: станков, аппаратов, моторов, емкостей, трубопроводов с арматурой, опорными частями и изоляцией, ленточных конвейеров, постоянных подъемных машин с их канатами и направляющими, а также вес жидкостей и твердых тел, заполняющих оборудование;

в) давление газов, жидкостей и сыпучих тел в емкостях и трубопроводах, избыточное давление и разрежение воздуха, возникающее при вентиляции шахт;

г) нагрузки на перекрытия от складируемых материалов и стеллажного оборудования в складских помещениях, холодильниках, зернохранилищах, книгохранилищах, архивах и подобных помещениях;

д) температурные технологические воздействия от стационарного оборудования;

е) вес слоя воды на водонаполненных плоских покрытиях;

ж) вес отложений производственной пыли, если ее накопление не исключено соответствующими мероприятиями;

з) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с пониженными нормативными значениями, приведенными в табл. 3;

и) вертикальные нагрузки от мостовых и подвесных кранов с пониженным нормативным значением, определяемым умножением полного нормативного значения вертикальной нагрузки от одного крана (см. п.4.2) в каждом пролете здания на коэффициент: 0,5 - для групп режимов работы кранов 4К-6К; 0,6 - для группы режима работы кранов 7К; 0,7 - для группы режима работы кранов 8К. Группы режимов работы кранов принимаются по ГОСТ 25546-82;

к) снеговые нагрузки с пониженным расчетным значением, определяемым умножением полного расчетного значения на коэффициент 0,5;

л) температурные климатические воздействия с пониженными нормативными значениями, определяемыми в соответствии с указаниями пп.8.2 - 8.6 при условии Тета1 = Тета2 = Тета3 = Тета4 = Тета5 = 0, ДельтаI = ДельтаVII = 0;

м) воздействия, обусловленные деформациями основания, не сопровождающимися коренным изменением структуры грунта, а также оттаиванием вечномерзлых грунтов;

н) воздействия, обусловленные изменением влажности, усадкой и ползучестью материалов.

Примечание. В районах со средней температурой января минус 5°С и выше (по карте приложения 5 к СНиП 2.01.07-85*) снеговые нагрузки с пониженным расчетным значением не устанавливаются.

1.8. К кратковременным нагрузкам следует относить:

а) нагрузки от оборудования, возникающие в пускоостановочном, переходном и испытательном режимах, а также при его перестановке или замене;

б) вес людей, ремонтных материалов в зонах обслуживания и ремонта оборудования;

в) нагрузки от людей, животных, оборудования на перекрытия жилых, общественных и сельскохозяйственных зданий с полными нормативными значениями, кроме нагрузок, указанных в п.1.7, а, б, г, д;

г) нагрузки от подвижного подъемно-транспортного оборудования (погрузчиков, электрокаров, кранов-штабелеров, тельферов, а также от мостовых и подвесных кранов с полным нормативным значением);

Изменением N 2, принятым и введенным в действие с 1 июля 2003 г. постановлением Госстроя РФ от 29 мая 2003 г. N 45 подпункт д пункта 1.8 настоящих СНиП изложен в новой редакции

См. текст подпункта в предыдущей редакции

д) снеговые нагрузки с полным расчетным значением;

е) температурные климатические воздействия с полным нормативным значением;

ж) ветровые нагрузки;

з) гололедные нагрузки.

1.9. К особым нагрузкам следует относить:

а) сейсмические воздействия;

б) взрывные воздействия;

в) нагрузки, вызываемые резкими нарушениями технологического процесса, временной неисправностью или поломкой оборудования;

г) воздействия, обусловленные деформациями основания, сопровождающимися коренным изменением структуры грунта (при замачивании просадочных грунтов) или оседанием его в районах горных выработок и в карстовых.

 

5. Конструктивная система и конструктивные схемы. Конструктивные системы и схемы зданий.

 

Конструктивная система здания представляет собою совокупность взаимосвязанных несущих конструкций здания, обеспечивающих его прочность, пространственную жесткость и надежность в эксплуатации. Выбор конструктивной системы здания определяет статическую роль каждой из его конструкций. Материал конструкций и технику их возведения определяют при выборе строительной системы здания.

Несущие конструкции здания состоят из взаимосвязанных вертикальных и горизонтальных элементов.

Конструктивная система представляет собой взаимосвязанную совокупность вертикальных и горизонтальных несущих конструкций здания, которые совместно обеспечивают его прочность, жесткость и устойчивость.

По виду вертикальной несущей конструкции различают пять основных и семь комбинированных конструктивных систем, которые можно представить так:

Таблица 2. Схема классификации строительных систем зданий

Крупноблочная строительная система применялась для возведения жилых зданий высотой до 22 этажей. Масса сборных элементов составляла 3-5 т. Установку крупных блоков осуществлялась по основному принципу возведения каменных стен - горизонтальными рядами, на растворе, с взаимной перевязкой швов.

Преимуществами крупноблочной строительной системы являются: простота техники возведения, обусловленная самоустойчивостью блоков при монтаже, возможностью широкого вменения системы в условиях различной сырьевой базы. Гибкая система номенклатуры блоков позволяла возводить различные типы жилых домов при ограниченном числе типоразмеров изделий. Эта система требовала меньших по сравнению с панельным и объемно-блочным домостроением капиталовложений в производственную базу из-за простоты и меньшей металлоемкости формовочного оборудования, а ограниченная масса сборных изделий позволяла использовать распространенное монтажное оборудование малой грузоподъемности.

Создание крупноблочной строительной системы стало первым этапом массовой индустриализации конструкций зданий с бетонными стенами. Крупноблочная система по сравнению с традиционной каменной дала снижение затрат труда на 10% и сроков строительства на 15-20%. По мере внедрения более индустриальной панельной системы постепенно уменьшается объем применения крупноблочной. Уже к середине 70-х годов прошлого столетия крупноблочная система в массовом жилищном строительстве занимает третье место по объему применения после панельной и традиционной каменной систем.

Панельная строительная система применяется при проектировании зданий высотой до 30 этажей в обычных грунтовых условиях и до 14 этажей в сейсмических районах. Внедрение панельной системы в жилищное строительство было начато в конце 1940-х годов одновременно в СССР и во Франции. В 1967 г. вступил в действие разработанный Госстроем СССР ГОСТ 11309-65 на все типы крупнопанельных домов, определяющий все требования к их качеству, устройству стыков и степени точности производства и монтажа изделий.

Стены таких зданий монтируют из бетонных панелей высотой в этаж, массой до 10 т и длиной в 1-3 конструктивно-планировочных шага. Конструкции панелей несамоустойчивы: при возведении их устойчивость обеспечивают монтажные приспособления, а в эксплуатации - специальные конструкции стыков и связей. Панели несущих стен устанавливают на цементном растворе, без взаимной перевязки швов. В середине 80-х годов в СССР панельное домостроение составляло около 60%, а в крупнейших городах достигало 90% всего объема жилищного строительства, что обеспечивало его высокие темпы. В сравнении с традиционной системой устройства ограждающих конструкций с каменными стенами панельная система позволяла снизить стоимость строительства на 6-7%, массу конструкций на 30-40% и затраты труда на 40%.

Техническим преимуществом панельных конструкций является их значительная прочность и жесткость. Это определило широкое применение панельных конструкций для зданий повышенной этажности в сложных грунтовых условиях (на просадочных и вечномерзлых грунтах, над горными выработками). По той же причине панельные конструкции демонстрируют большую сейсмостойкость по сравнению с другими строительными системами.

В других экономически развитых странах объем панельного строительства растет также интенсивно, что объясняется высокой экономической эффективностью строительной системы. Однако, следует заметить, что ни одна страна к началу 80-х годов не имеет такой мощной индустриальной базы строительной отрасли, а к середине 80-х большинство западных стран затронуто серьезным экономическим кризисом.

Каркасно-панельная строительная система с несущим сборным железобетонным каркасом и наружными стенами из бетонных или небетонных панелей применяется в строительстве зданий высотой до 30 этажей. Внедрена в СССР наряду с панельной в конце 1940-х годов, до начала 90-х годов на ее основе ежегодно возводилось около 15% объема общественных зданий. В жилищном строительстве систему применяли в ограниченном объеме, поскольку она уступала панельной по технико-экономическим показателям.

Объемно-блочная строительная система также впервые была внедрена советскими строителями. Объемно-блочные здания возводят из крупных объемно-пространственных железобетонных элементов массой до 25 т, заключающих в себе жилую комнату или другой фрагмент здания. Объемные блоки, как правило, устанавливали друг на друга без перевязки швов.

Объемно-блочное строительство позволяет существенно снизить суммарные трудозатраты в строительстве (на 12-15% по сравнению с панельным) и получить прогрессивную структуру этих затрат. Если в панельном строительстве соотношение затрат труда на заводе и строительной площадке составляет в среднем 50 на 50%, то в объемно-блочном оно приближается от 80% заводского изготовления к 20% трудозатрат на стройплощадке. Из-за сложности технологического оборудования капиталовложения при создании заводов объемно-блочного домостроения на 15% больше по сравнению с заводами панельного домостроения.

Объемно-блочную систему применяют для строительства жилых домов высотой до 16 этажей в обычных и сложных грунтовых условиях и для жилых домов малой и средней этажности при сейсмичности 7-8 баллов. Наиболее эффективно объемно-блочное домостроение при значительной концентрации строительства, необходимости его осуществления в сжатые сроки, при дефиците рабочей силы.

Технико-экономические показатели рассмотренных строительных систем зданий даны в табл. 3.

В связи с невозможностью сразу охватить все районы страны сетью домостроительных комбинатов, наряду с рассмотренными системами получают различные направления в индустриализации технологических процессов возведения несущих конструкций зданий, выполняемых частично или полностью из монолитного бетона.

Монолитная и сборно-монолитная строительные системы применяются преимущественно для возведения зданий повышенной этажности. К системе монолитного домостроения относятся здания, все несущие конструкции которых выполняют из монолитного бетона, к сборно-монолитной - здания, в которых несущие конструкции выполняют частично сборными, частично монолитными. Монолитные здания, как правило, проектируют бескаркасными, сборно-монолитные - каркасными или бескаркасными.

 

7. Понятие «разбивочные оси». Привязки конструктивных элементов к разбивочным осям. Номинальные, конструктивные и натурные размеры конструктивных элементов (КЭ). Особенности привязки КЭ к разбивочным осям в крупнопанельных зданиях (КПЗ) и кирпичных зданиях.

Разбивочные оси— линии, позволяющие определять в процессе строительства положение отдельных элементов и частей возводимых зданий

Различают главные, основные и промежуточные (детальные) оси

В промышленном и гражданском строительстве в качестве главных осей принимают оси симметрии зданий.

Основные оси определяют форму и габаритные размеры зданий и сооружений.

Промежуточные, или детальные, оси - это оси отдельных элементов зданий и сооружений.

Указанные в проекте сооружения координаты, углы, расстояния и превышения называют проектными.

Строительство здания начинают с закрепления на местности координационных (разбивочных) осей. Такие оси на чертежах обозначают буквами и цифрами. Расположение конструктивного элемента относительно координационных осей здания называют его привязкой.

Резка на панели.

Панели для внешних стен

Панели внешних стен выпускаются двух основных разновидностей:

1. Однослойные панели. Изготавливаются из лёгкого железобетона.

2. Многослойные сэндвич-панели.

Наружные стеновые панели, используемые в зданиях с конструктивной схемой типа «поперечные перегородки», производят с использованием лёгких строительных материалов: керамзитофибробетон, ячеистый бетон.

Длина панелей для внешних стен, применяемых в пятиэтажных домах равна шагу поперечных панельных стен-перегородок. В зависимости от назначения здания, фасадные панели выпускаются следующих размеров: 2,5м; 2,8м; 3,2м; 3,6м и 6м.

Панели для внутренних стен

Изготавливаются однослойными, а в качестве материалов применяется лёгкий или обычный железобетон. В зависимости от своей толщины, внутренние панели могут применяться как в качестве несущих стен, так и в качестве панелей диафрагм жёсткости. Внутренние стены, не являющиеся несущими устанавливаются, в основном, в качестве стен-перегородок лёгкой конструкции.

Плиты перекрытий

Существует три основных вида плит перекрытий:

1. Полнотелые железобетонные панели.

  1. Частично сборно-монолитные плитные элементы со слоем бетона.
  2. Многопустотные плиты — с круглыми пустотами.

16. Фундаменты. Требования к фундаментам. Классификация фундаментов. Размеры,
виды фундаментов, используемые для возведения кирпичных зданий и КПЗ.

17. Конструкции свайных и сплошных фундаментов.

Свайные фундаменты

Железобетонные свайные фундаменты применяют для зданий различных конструктивных систем, этажности и в разнообразных грунтовых условиях. Наиболее целесообразны такие фундаменты при слабых, неравномерно деформируемых основаниях. Различают два типа свай — сваи-стойки и висячие сваи. Первые прорезают напластования слабых грунтов и передают всю приходящуюся на них нагрузку через острие на подстилающий слой прочного грунта. Фундамент на таких сваях обеспечивает минимальную осадку здания. Висячие сваи не достигают прочного слоя и передают нагрузку основанию через острие и через боковые поверхности за счет сил трения между ними и уплотненным грунтом. Наиболее распространены фундаменты из забивных висячих коротких (длиной 4 – 7 м) железобетонных свай квадратного или круглого, сплошного или полого сечения площадью до 0,1 м2. Верхняя часть свай, частично разрушаемая при забивке, срезается, усиливается специальным сборным железобетонным оголовком, а полость между оголовком и сваей замоноличивается. Нагрузка от несущих конструкций передается на сваи через сборные или монолитные элементы — ростверки. Их располагают в плане здания в виде перекрестных балок под несущими стенами по сваям, забитым в один- два ряда (в зависимости от требований прочности).


В панельных домах высотой до 12 этажей с малым шагом поперечных стен и перекрытиями из панелей размером на комнату применяется наиболее экономичный вариант конструкции — безростверковые свайные фундаменты. При этом роль продольных ростверков выполняют наружные цокольные панели, роль поперечных ростверков – поперечные стены в первом этаже, а панели перекрытия в уровне пола первого этажа опираются непосредственно на оголовки свай. Эта конструкция требует размещения верхней опорной поверхности оголовков с точностью 7—10 мм. Применение безростверковой конструкции фундаментов дает по сравнению с ростверковой сокращение стоимости на 31%, трудоемкости на 27% и расхода стали на 5%.

Под колонны многоэтажных каркасных зданий забивают несколько (куст) свай так как несущая способность одной забивной сваи относительно' невелика. Наряду с забивными используют набивные сваи из монолитного бетона, заполняющего специально пробуренные скважины в грунте. Под сильно нагруженные колонны высотных зданий устраивают опоры глубокого заложения (15—40 м) из набивных железобетонных свай-оболочек. Несущая способность таких свай выше, чем забивных, в 8-10 раз.

а — фрагмент плана фундамента под несущие стены; б – фундамент под колонну; в – фундамент на сваях-стойках; г – тоже на висячих сваях; д — стык сборного ростверка с забивной сваей; e – свая; 2 — ростверк; 3 — оголовок сваи; 4 — колонна; 5 — монолитный ростверк стаканного типа под колонну; 6 – арматура сваи: 7 – свая-стойка; 8 – висячая свая; 9 — монолитный ростверк; 10 – бетон замоноличивания; 11 – закладная деталь; 12 – стальная деталь; 13 – панель перекрытия; 14 – панель стены; 15 – цементный раствор.

Гидроизоляция подземной части здания. Фундаменты подвергаются увлажнению грунтовой влагой и просачивающейся в грунт атмосферной влагой. Увлажнение фундаментоз может снизить их долговечность, вызвать отсыревание стен подвала и повысить влажность стен, наземной части здания вследствие капиллярного подсоса влаги. Для и с-: ключения капиллярного подсоса наземную часть стен (наружных и внутренних) изолируют от фундаментов горизонтальной гидроизоляцией в уровне низа цокольного перекрытия. В зданиях с подвалами предусматривается еще один ряд горизонтальной гидроизоляции в уровне пола подвала. Горизонтальная гидроизоляция устраивается обычно из двух слоев рубероида на битумной мастике. Если проектом предусмотрена совместная статическая работа наземной и подземной частей здания на горизонтальные нагрузки, гидроизоляция осуществляется из цементного раствора состава 1:2. По всей внешней поверхности фундаментов устраивается вертикальная обмазочная гидроизоляция горячим битумом за два раза. Возможность увлажнения фундамента дождевыми и талыми водами должна исключаться планировкой территории застройки и устраиваемой по внешнему периметру здания отмосткой из плотных водонепроницаемых материалов – асфальта, асфальтобетона. Отмостка имеет уклон от здания 3%.Полы подвалов и технических подполий, как правило, должны располагаться выше уровня грунтовых вод. В тех случаях, когда это невыполнимо, должны предусматриваться меры по водопонижению.

Сплошные фундаменты

Сплошные фундаменты проектируют в виде балочных или безбалочных, бетонных или железобетонных плит. Ребра балочных плит могут быть обращены вверх и вниз. Места пересечения ребер служат для установки колонн каркаса. Пространство между ребрами в плитах с ребрами вверх заполняют песком или гравием, а поверх устраивают бетонную подготовку. Бетонные плиты не армируют. Железобетонные армируют по расчету. При большом заглублении сплошных фундаментов и необходимости обеспечить большую их жесткость фундаментные плиты можно проектировать коробчатого сечения с размещением между ребрами и перекрытиями коробок помещений подвалов. На рис. 8.8 показаны различные варианты решений сплошных фундаментов.

а - без ребер; 6 - ребрами вниз; в - ребрами вверх; г - коробчатые; д - объемный фундамент, используемый в качестве гаража

18. Конструкции и материалы панелей наружных и внутренних стен (стеновые и
перекрытия).

Наружные панели

Однослойные панели изготовляют из однородного малотеплопроводного материала (легкого или ячеистого бетона), класс прочности которого должен соответствовать воспринимаемым нагрузкам, а толщина, кроме того, учитывать климатические условия района строительства. Панель армируется сварным каркасом и сеткой. С наружной стороны панели имеют защитный слой из тяжелого бетона толщиной 20...40 мм или декоративного плотного бетона (для защиты от атмосферных влияний) и с внутренней стороны — отделочный слой из цементного или известковоцементного раствора толщиной 10... 15 мм. Хорошим материалом для однослойных панелей является ячеистый бетон плотностью 600...700 кг/м3. Толщина панелей из ячеистого бетона зависит от климатических условий и принимается от 240 до 320 мм. Эти панели применяют для зданий с поперечными несущими стенами, а наружные стеновые панели являются самонесущими. Торцовые стены состоят из двух панелей: внутренней несущей — из железобетона и наружной самонесущей — из ячеистого бетона. Однослойные панели имеют простые конструктивные решения и технологию изготовления.

Двухслойные панели состоят из несущего слоя из плотного легкого или тяжелого бетона класса В10...В15 плотностью более 1000 кг/м3 и утепляющего слоя — из теплоизоляционного легкого или ячеистого бетона или жестких термоизоляционных плит. Толщина несущего слоя для стеновых панелей должна быть не менее 60 мм, и располагают его с внутренней стороны помещения, чтобы он одновременно являлся и пароизоляционным. Теплоизоляционный слой снаружи защищают слоем декоративного бетона или раствора марки 50...70 толщиной 15... 20 мм. Если применяют утеплитель в виде полужестких термоизоляционных плит или укладываемых способом заливки, то несущий железобетонный слой принимают ребрами по контуру или часторебристым. На Рис. 4 показана конструкция двухслойной панели наружной стены из легкого бетона.

Трехслойные панели состоят из двух тонких железобетонных плит и эффективного теплоизоляционного слоя (утеплителя), укладываемого между ними. В качестве утеплителя применяют полужесткие минераловатные плиты, минеральную пробку, цементный фибролит, асбестоцементные плиты, минераловатные маты на фенольной связке, маты из стекловолокна, а также жесткие утеплители — пеностекло, пенокералит, пеносиликат и др. Железобетонные слои панели соединяют между собой сварными арматурными каркасами. Внутренний слой трехслойной панели принимают толщиной 80 мм, а наружный — 50 мм. Толщину слоя утеплителя определяют теплотехническим расчетом.


Внутренние стены


19.
Стыки наружных и внутренних стеновых панелей. Требования к стыкам.

 


20. Стыки панелей стен КПЗ. Передача силовых воздействий. Плоские и
профилированные бетонные и железобетонные, сварные, петлевые и
самофиксирующиеся стыки.

Эксплуатационные качества крупнопанельных домов во многом зависят от конструктивного исполнения стыков между панелями и с другими элементами здания.

Стыки между панелями наружных стен должны быть герметичными (т. е. иметь малую воздухопроницаемость и исключать проникание дождевой воды внутрь конструкции), не допускать образования конденсата в месте стыка (вследствие недостаточных теплозащитных свойств), обладать достаточной прочностью, чтобы предохранить стык от появления в нем трещин.

При конструировании крупнопанельных зданий необходимо учитывать также особенности работы стен. Если в кирпичных стенах нагрузки распределяются равномерно, то в крупнопанельных они концентрируются в местах стыкования панелей. Кроме того, под влиянием изменений температуры меняются линейные размеры стены. Это происходит из-за воздействия на поверхности панели положительной (с внутренней стороны) и отрицательной (с наружной стороны) температуры, в результате чего изменяются ее линейные размеры. Возникающие при этом усилия приводят к образованию трещин.

Рис 12.9. Конструкция вертикального упруго-податливого стыка панелей:

1 — стальная накладка, 2 — закладные детали, 3 — тяжелый бетон, 4 — термовкладыш, 5 — полоса гид-роиэзола или рубероида, б — гериит или поронзол, 7— раствор или герметик

По расположению стыки различают вертикальные и горизонтальные. Вертикальные стыки по способу связей панелей между собой разделяют на упруго податливые и жесткие (монолитные). При устройстве упругоподатливого стыка (рис, 12.9) панели соединяются с помощью стальных связей, привари ваемых к закладным деталям стыкуемых элементов. В паз, образуемый четвертями, входит на глубину 50 мм стеновая панель внутренней поперечной стены. Соединяют панели с помощью накладки из полосовой стали, привариваемой к закладным деталям панелей. Для герметизации стыка в его узкую щель заводят уплотнительный шнур гернита на клею или пароизола на мастике. С наружной стороны стык промазывают специальной мастикой — тиоколовым герметиком.

Для изоляции от проникновения влаги с внутренней стороны стыка наклеивают на битумной мастике вертикальную полоску из одного слоя гидроизола или рубероида. Вертикальный колодец стыка заполняют тяжелым бетоном.

Недостатком упругоподатливых стыков является возможность коррозии стальных связей и закладных деталей. Такие крепления податливы и не всегда обеспечивают длительную совместную работу сопрягаемых панелей и, следовательно, не могут предохранить стык от появления трещин. Это происходит потому, что от нагрева при сварке закладная деталь как бы отрывается от бетона, в который она была замоноличена при изготовлении. Проникающая в щель атмосферная или конденсационная влага разрушает нижнюю поверхность закладной детали.

Для защиты от коррозии их покрывают на заводе со всех сторон цинком путем распыления, горячего цинкования или гальванизации. После сварки при монтаже панели защитный слой с лицевой стороны закладной детали и связи-накладки восстанавливается с помощью газопламенной металлизации. Кроме того, оцинкованные стальные элементы защищают замоноличиванием их цементно-песчаным раствором (1: 1.5...1:2) толщиной не менее 20 мм.

Более надежными в работе являются жесткие монолитные стыки. Прочность соединения между стыкуемыми элементами обеспечивается замополичиванием соединяющей стальной арматуры бетоном. На рис. 12.10 показан монолитный стык однослойных стеновых панелей с петлевыми выпусками арматуры, соединенными скобами из круглой стали диаметром 12 мм. Между замоноличенной зоной стыка и герметизацией образована вертикальная воздушная полость, которая служит дренажным каналом, отводящим попадающую внутрь шва воду с выпуском ее наружу на уровне цоколя. Нередко в стык панелей для повышения его теплозащитных свойств укладывают минераловатный вкладыш, обернутый полиэтиленовой пленкой, или из пенопласта (рис. 12.11).

Рис. 12.10. Монолитный вертикальный стык:

а — вертикальный стык, б — то же, с утепляющим пакетом, 1 — наружная керамзито-бетонная панель, 2 — анкер диаметром 12 мм, 3 - дренажный канал, 4 — пороиэолоиый жгут, 5 — герметик, б — прокладка, 7 — скобы, 8 - бетон, 9 — внутренняя несущая панель из железобетона, 10 — петля, 11 — минераловатный пакет

Для устройства жестких стыков используют также сварные анкеры-связи (рис. 12.12), которые представляют собой Т-образные элементы, изготовленные из полосовой стали и располагаемые в стыке «на ребро». При этом в стеновых панелях оставляют концевые выпуски арма-туры (в пределах габарита форм), которые приваривают после установки панелей к концам анкеров. Такое соединение позволяет обеспечить возможность плотного заполнения полости стыка бетоном, уменьшить почти в три раза расход стали.

Рис. 12.11. Жесткий вертикальный стык трехслойных панелей:

1 — герметик, 2 — рубероид или гидроюол, 3 — термовкладыш (минераловатный пакет, обернутый пленкой), 4 — термоизоляционный слой панели, 5 — тяжелый бетон

 

Рис. 12.12. Соединение стеновых панелей с помощью сварного стального анкера-связи:

1 — арматурные выпуски из панелей, 2 — сварные швы, 3 — Т-обраэный анкер-связь 4 — деталь анкера-связи

 

Рис. 12.13. Беэметалльный стык панелей:

а — горизонтальный стык, 6 — вертикальный стык, в - схема панели, 1 — герметизирующая мастика, 2 — уплотнительный шнур, 3 - панель наружной стены, 4 — раствор, 5 — утеплитель, 6 — панель перекрытия, 7— панель внутренней поперечной стены, 8— гернит или пороизол, 9— шпонка

 

Рис. 12.14. Конструкция горизонтального стыка однослойных стеновых панелей: 1 — железобетонная панель перекрытия, 2 — цементный раствор, 3 — стеновая панель, 4 — противодождевой барьер, 5 — герметизирующая мастика (тиоколовая или полиизобутиленовая УМС-50), 6 — пороизол или гернит, 7 — термовкладыш в гидроизоляционной оболочке

 

Интересным является устройство стыка в виде ласточкина хвоста, разработанное в ЦНИИЭП жилища. При этом почти полностью можно отказаться от применения стальных связей (рис. 12.13).

Для устройства горизонтальных стыков верхнюю стеновую панель укладывают на нижнюю на цементном растворе. При этом через горизонтальный шов, плотно заполненный раствором, дождевая вода может проникать главным образом вследствие капиллярного подсоса воды через раствор. Ног почему принята такая сложная геометрия горизонтального стыка (рис. 12.14). В нем устраивают гак называемый противодо-ждевой барьер или зуб в виде гребня, идущего сверху вниз. На наклонной части раствор прерывают и создают воздушный зазор, в пределах которого подъем влаги по капиллярам прекращается.

Таким образом, мы видим, что для обеспечения нормальных эксплуатационных качеств стен из крупных панелей для устройства стыков применяют различные материалы, имеющие самые разнообразные физико-механические свойства: крепежные (сталь), утепляющие (минераловатные вкладыши), гидроизолирующие (рубероид или изол), связующие и уплотняющие (бетон и раствор), герметизирующие (пороизол или гранит и мастики). Все эти материалы имеют разную долговечность и часто гораздо меньшую срока службы здания. Вот почему при конструировании стыков панелей и их исполнении необходимо особое внимание уделять возможности обеспечения высокого качества производства строительных работ, применяя для этого материалы только с хорошими физико-механичес кими свойствами.

Соединение панелей внутренних стен бескаркасных зданий (рис. 12.15) осуществляется путем сварки соединительных стержней диаметром 12 мм к закладным деталям по верху панели. Вертикальные швы между панелями заполняют упруги-ми прокладками из антисептированных мягких древесноволокнистых плит, обернутых толем, а вертикальный канал заполняют мелкозернистым бетоном или раствором.

Рис. 12.15. Конструкция стыка внутренних стен:

а — на уронне перекрытий, б — на уровне течения панелей, 1 — соединительные стержни диаметром 12 мм, 2— закладные детали, 3 — монолитный бетон, 4 — панель продольной внутренней стены, 5 — упругая прокладка (антисептировинная мягкая Древесноволокнистая плита, обернутая толем), 6 — цементный раствор

 

На рис. 12.16 показан узел оттирания плит перекрытия на внутреннюю панель и соединение панелей с помощью самофиксирующего болта.

Нередко горизонтальный стык между несущими панелями поперечных стен и перекрытий проектируют платформенного типа (рис. 12.17), особенностью которого является оттирание перекрытий на половину толщины поперечных стеновых панелей, при котором усилия в верхней итеновой панели на нижнюю передаются через опорные части панелей перекрытий. Швы между панелями и плитами выполняют на растворе. Однако в случае неполного заполнения швов раствором В отдельных участках панелей может возникнуть опасность концентрации напряжения. Чтобы предотвратить это явление, для стыковых соединений применяют цементно-песчаную пластифицированную пасту, из которой можно получать тонкие швы толщиной 4...5 мм. Такая паста состоит из портланд цемента марки 400...500 и мелкого песка с максимальным размером частиц 0,6 мм (состав 1: 1) с добавлением пластифицирующей и противоморозной добавки нитрата натрия в количестве 5..10% от массы цемента. Такая паста как бы склеивает панели между собой.

Рис, 12.16. Конструкция соединения панелей внутренних стен и перекрытий: 1 — цементный раствор, 2 - стеновая внутренняя панель, 3 — паз длиной 100 мм, 4 — самофиксирующийся болт диаметром 25 мм, 5 — панель перекрытия

Рис. 12.17, Конструкция горизонтального платформенного стыка панелей внутренних поперечных несущих стен:

1 — панель внутренней стены, 2 — панель перекрытия, 3 — цементно-песчаная паста

 

При строительстве крупнопанельных зданий существует много других конструкций стыков, однако требования к ним и принципы исполнения являются общими

 

21. Стыки стеновых панелей КПЗ. Защита от внешних и внутренних несиловых
воздействий. Открытый и закрытый стыки. Дренированный стык.

См 19-й вопрос (в рисунках) и 20-й вопрос.

22. Особенности конструктивных решений покрытий КПЗ.


 



Поделиться:


Последнее изменение этой страницы: 2016-12-30; просмотров: 702; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.12.240 (0.087 с.)